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To my mother, last lighthouse when navigating into the darkest storms.



Prefácio

“Evolução: uma teoria na História ou uma história sem fim?”

Uma das teorias mais aceitas na contemporaneidade sobre o método cientı́fico
é a dos paradigmas, popularizada por Thomas Kuhn. No entanto, esse modelo
não dá conta de descrever como se dão as crises e quebras de paradigma ao
longo da história, justamente porque é muito difı́cil para quem vive dentro de um
determinado paradigma se aperceber de que o mesmo enfrenta graves desafios.

Em nosso ponto de vista, o reconhecimento do papel histórico e epistemológico
das controvérsias pode apontar para a solução dos dilemas que envolvem os
paradigmas em todas as épocas. Se olharmos para as grandes controvérsias
do passado, constataremos que muitas delas não foram cabalmente dirimidas,
ressurgindo na arena cientı́fica de tempos em tempos. Mais ainda, se considerarmos
os grandes debates atuais como importantes não apenas quanto à definição de
um lado “vencedor”, as discordâncias podem nos ensinar muito mais sobre
como funciona a ciência do que as concordâncias.

Toda vez que chegamos ao limite momentâneo de uma ciência, verificamos
que há domı́nios além dos conhecimentos daquela ciência e que se podem chamar
de “metafı́sicos”. Com o passar do tempo esses domı́nios acabam sendo melhor
entendidos e trazidos para dentro do escopo das ciências, mas é como se a
barreira da metafı́sica se deslocasse sempre para um novo nı́vel. Mais ainda: é
a metafı́sica que alimenta muitas das fronteiras da ciência, colocando-lhe como
desafio problemas ainda insolúveis dentro do estado da arte.

De fato, há uma série de problemas metafı́sicos não resolvidos pelas diversas
ciências. Por exemplo, em fı́sica, não temos ideia de onde estão os limites da
subdivisão da matéria e energia, pois hoje há teorias onde se fala em subquarks,
quando até bem pouco tempo os quarks, que se candidatam a “blocos” constitutivos
das chamadas partı́culas elementares, eram entidades completamente ignoradas.
Um outro exemplo é o que ocorre quando se pergunta aos cientistas qual seria
a estrutura de um fóton: essa busca pela essência parece atemorizá-los de tal
forma que os leva a repelir a questão.

Não causa surpresa que a biologia esteja envolvida em uma série de grandes
controvérsias que extravasam para a sociedade contemporânea, tais como: origem
e essência da vida, existência de vida extraterrestre, processo da hominização,
inteligência artificial, teleologia dos processos vitais, sociobiologia, manipulação
genética ou impasses ecológicos.

Dentre os problemas da biologia, desde o século XIX tomou vulto o da
evolução das espécies. As controvérsias que cercam a mais aceita das teorias da
evolução, na sua roupagem atual do neodarwinismo, caem num terreno sensı́vel,
porque se tornou palco de ideologias que levam as pessoas a pensar que criticar
essa teoria significa defender o criacionismo religioso na sua forma fundamentalista.
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Para se entender como podem subsistir com base cientı́fica outras teorias evolutivas
e conceitos como autocriação, ou que volta e meia se encontre a recorrência de
questões metafı́sicas entre as teorias cientı́ficas, devemos nos perguntar quais
foram ao longo da História as controvérsias dessas teorias e como foram enfrentadas.

Já em biologia não há consenso quanto à capacidade de se decifrar a formação
da vida e de suas propriedades apenas pela decodificação dos genomas. Há
na atualidade os que pensam ser cientificamente viável o caminho inverso da
proteı́na para o DNA, rompendo a barreira de Weissmann, o que na prática
significaria a possibilidade de herança de caracteres adquiridos na consequente
aparição de novas espécies. Nesse contexto é interessante contrapor ao conceito
de “relojoeiro cego” a ideia de um universo autocriador de sua própria ordem,
imaginando como uma complexificação crescente levaria de moto proprio a
evolução do inanimado para a vida e para o ponto de inflexão que foi o surgimento
da humanidade.

Essas considerações preliminares se aplicam a Richard Montgomery, que
é uma dessas raras pessoas que ultrapassam com felicidade os muros que a
especialização positivista tem imposto como regra acadêmica e profissional.
Sua inquietação intelectual o faz caminhar da neurologia para a economia, para
as profundezas da inteligência artificial e de volta para a biologia e daı́ para a
fı́sica, circulando pela reflexão matemática abstrata e aplicada e tergiversando
alegremente com a História e a Filosofia. Essa disposição de criar um itinerário
próprio vale a pena ser conhecida e discutida.

Gildo Magalhães
Professor Titular

Centro de História da Ciência
Universidade de São Paulo
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General Introduction

Introduction

This habilitation thesis presents a body of work situated at the intersection of stochastic anal-
ysis, partial differential equations, and mathematical physics. The overarching objective is to
develop and apply advanced mathematical tools to the study of complex systems evolving under
the influence of random fluctuations. The research presented herein progresses from founda-
tional concepts in stochastic calculus and the theory of well-posed stochastic partial differential
equations (SPDEs) to the frontier of the field: the analysis of singular SPDEs, which have long
posed a formidable challenge to the mathematical community.

The classical theory of SPDEs, built upon the foundational work of Itô and others, pro-
vides a robust framework for a wide class of equations where the nonlinearities are sufficiently
regular with respect to the driving noise. The early chapters of this thesis review and extend
this classical framework, exploring [mention topics from early chapters, e.g., the application of
Malliavin calculus, the study of large deviation principles for certain classes of SPDEs, or the
analysis of specific models from fluid dynamics or finance]. These investigations establish the
groundwork and highlight the limitations of classical methods when confronted with the highly
irregular solutions and ill-posed nonlinearities characteristic of singular SPDEs.

Such singular equations are not mere mathematical curiosities; they are central to the de-
scription of fundamental physical phenomena. Models such as the Kardar-Parisi-Zhang (KPZ)
equation, which describes the universal behaviour of growing interfaces, and the dynamic Φ4
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model from quantum field theory, fall into this category. For decades, a rigorous mathemat-
ical understanding of these equations remained elusive, with progress being driven primarily
by the non-rigorous but powerfully predictive methods of theoretical physics, most notably the
renormalisation group.

The central contribution of this thesis, presented in the final chapter, is an original and
self-contained exposition of the modern mathematical theory that has finally provided a rig-
orous foundation for the study of these singular SPDEs. This work culminates in a detailed
presentation of Martin Hairer’s theory of regularity structures, a revolutionary framework that
has transformed the field. This final chapter, which constitutes an original research monograph,
develops the abstract theory from first principles, proves the central Reconstruction Theorem,
and demonstrates its application to the KPZ and Φ4

3 equations. It provides a complete, thesis-
level treatment of the subject, including a thorough discussion of the necessary renormalisation
procedures.

By progressing from the classical to the singular, this thesis aims to provide a coherent and
comprehensive account of the state of the art in the field of SPDEs. It showcases the development
of a powerful new mathematical language and demonstrates its utility in solving long-standing
open problems, thereby bridging the gap between physical intuition and mathematical rigour.
The work presented here not only consolidates and builds upon existing knowledge but also pro-
vides a definitive and accessible entry point into one of the most exciting and rapidly developing
areas of modern mathematics.
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Chapter 1

Foundations of the Modern Theory of

Partial Di�erential Equations

1 Introduction: A Historical and Conceptual Overview

The theory of Partial Di�erential Equations (PDEs) constitutes a principal pillar of modern
mathematics, providing the language for a vast range of phenomena across the natural sciences,
engineering, and even �nance. Its development is a rich narrative of the symbiotic relationship
between the quest to model the physical world and the pursuit of abstract mathematical truth.
This chapter is dedicated to laying the foundational groundwork for the modern, analysis-based
approach to PDEs, a framework that has proven indispensable for understanding the existence,
uniqueness, and qualitative properties of solutions.

1.1 The Genesis: From Vibrating Strings to Heat Flow

The origins of PDE theory can be traced to the mid-18th century, with the investigation of the
vibrating string problem. The question was to describe the motion of a taut, �exible string �xed
at both ends. In 1747, Jean le Rond d'Alembert derived the one-dimensional wave equation,

∂2u

∂t2
= c2

∂2u

∂x2
(1)

and provided his celebrated solution, u(x, t) = f(x+ ct) + g(x− ct), representing the superpo-
sition of two waves travelling in opposite directions. This work sparked a vigorous debate with
Leonhard Euler and Daniel Bernoulli regarding the nature of the initial functions f and g. Could
they be any arbitrary function drawn by hand, or must they be analytic? This controversy was
a harbinger of the central role that the concept of a `function' would play in the development of
analysis.

Decades later, in his seminal 1822 work Théorie analytique de la chaleur, Joseph Fourier
introduced the heat equation to model the di�usion of thermal energy in a solid body:

∂u

∂t
= k∆u (2)

To solve this equation, Fourier developed the revolutionary technique of representing a function
as an in�nite series of trigonometric functions�what we now call a Fourier series. His audacious
claim that any arbitrary function could be so represented was met with scepticism but ultimately
laid the groundwork for harmonic analysis and the rigorous study of function spaces.

1.2 The 19th Century: A Flourishing of Models

The 19th century witnessed the formulation of the cornerstone equations of mathematical
physics. Pierre-Simon Laplace and Siméon Denis Poisson developed the Laplace and Poisson

equations,
∆u = 0 and −∆u = f (3)
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Chapter 1: Foundations of Modern PDE Theory 2

to describe gravitational and electrostatic potentials. The study of these elliptic equations led to
the development of potential theory and the discovery of the remarkable smoothness of harmonic
functions. In �uid dynamics, Claude-Louis Navier and George Gabriel Stokes formulated the
Navier�Stokes equations, a system of nonlinear PDEs describing the motion of viscous �uids.
In electromagnetism, James Clerk Maxwell uni�ed electricity, magnetism, and light with his
celebrated system of equations, which are �rst-order linear PDEs.

Figure 1: Classical Partial Di�erential Equations. This comprehensive �gure illustrates the
three fundamental classes of PDEs that motivated the development of modern PDE theory. (Top
left) Solution to Laplace's equation ∆u = 0, showing the harmonic function u(x, y) = x2 − y2,
which exhibits the characteristic saddle-point geometry. (Top middle) Solution to the Pois-
son equation −∆u = f with a constant source term on a disk, demonstrating the smoothing
e�ect of elliptic operators. (Top right) Fundamental solution of the heat equation ∂u

∂t = ∆u,
showing the di�usion and spreading of an initial Gaussian pro�le over time. (Bottom left)

d'Alembert's solution to the wave equation ∂2u
∂t2

= c2 ∂
2u

∂x2 , illustrating the propagation of a wave
pulse in both directions without dispersion. (Bottom middle) Comparison of the smoothing
property: an initially discontinuous function is immediately smoothed by the heat equation,
demonstrating the fundamental di�erence between parabolic and hyperbolic equations. (Bot-
tom right) Characteristic curves for the wave equation, showing the �nite speed of propagation
along lines x± ct = const, a hallmark of hyperbolic PDEs.

1.3 The 20th Century Paradigm Shift: The Need for a Broader View

By the turn of the 20th century, it became increasingly clear that the classical framework of
continuously di�erentiable solutions was inadequate. Physical phenomena such as shock waves
in gas dynamics or the interfaces between di�erent media required a more general notion of a
solution. The mathematical world needed a way to make sense of equations whose solutions
were not smooth.

This impetus led to one of the most profound developments in modern mathematics: the
birth of functional analysis. The revolutionary idea was to treat functions themselves as points



Chapter 1: Foundations of Modern PDE Theory 3

in an in�nite-dimensional vector space. This allowed the powerful geometric and algebraic tools
of linear algebra to be generalised and applied to problems in analysis. The introduction of
normed spaces, complete spaces (Banach spaces), and spaces with an inner product (Hilbert
spaces) by mathematicians like Stefan Banach, David Hilbert, and Frigyes Riesz provided the
abstract setting.

Within this framework, the concept of a weak solution emerged. The idea is to reformulate
the PDE in an integral form, transferring derivatives from the unknown solution onto a space
of in�nitely smooth `test functions'. This was formalised by Sergei Sobolev in the 1930s with
the introduction of what are now called Sobolev spaces. These spaces consist of functions
that may not be di�erentiable in the classical sense but possess `weak derivatives' that are well-
behaved in an integral sense. Almost simultaneously, Laurent Schwartz developed the theory
of distributions, or generalised functions, providing an even broader framework in which every
distribution is in�nitely di�erentiable.

This modern approach, which combines functional analysis and the theory of weak solutions,
has been spectacularly successful. It provides a uni�ed framework for proving the existence and
uniqueness of solutions to a vast class of linear and nonlinear PDEs. This chapter is devoted to
a systematic and rigorous development of these foundational concepts. We will build the theory
from the ground up, starting with the essential structures of functional analysis and culminating
in the Lax�Milgram theorem, a cornerstone result for the existence of weak solutions to elliptic
equations. Throughout, we will use the classical equations of mathematical physics as motivating
examples, demonstrating how the abstract theory provides deep and essential insights into the
concrete problems from which it grew.

2 Functional Analytic Preliminaries: The Language of Modern

PDE Theory

The shift from classical to modern PDE theory is fundamentally a change in language and
perspective. The new language is that of functional analysis, and the new perspective is to view
solutions not as individual functions but as points in an in�nite-dimensional space. This section
provides a rigorous, self-contained development of the essential concepts: normed vector spaces,
Banach spaces, and the geometrically rich Hilbert spaces.

2.1 Normed Vector Spaces and Banach Spaces

We begin with the foundational algebraic and topological structure.

De�nition 2.1 (Normed Vector Space). A normed vector space is a pair (V, ∥·∥), where V is
a vector space over a �eld F (which for our purposes will always be R or C), and ∥·∥ : V → [0,∞)
is a function, called the norm, satisfying the following axioms for all u, v ∈ V and all scalars
α ∈ F:

(i) Positive De�niteness: ∥u∥ = 0 if and only if u = 0.

(ii) Absolute Homogeneity: ∥αu∥ = |α|∥u∥.

(iii) Triangle Inequality (Subadditivity): ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

The norm introduces a natural notion of distance via the metric d(u, v) = ∥u − v∥. This
allows us to talk about convergence and continuity. A sequence (un)

∞
n=1 in V converges to u ∈ V

if limn→∞ ∥un − u∥ = 0.
However, a normed space is not su�cient for analysis, which relies on limit processes. We

need to ensure that sequences that should converge actually do converge to a point within the
space. This is the property of completeness.
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De�nition 2.2 (Cauchy Sequence and Banach Space). A sequence (un)
∞
n=1 in a normed space

V is a Cauchy sequence if for every ϵ > 0, there exists an integer N such that for all m,n > N ,
we have ∥um − un∥ < ϵ. A normed vector space V is complete if every Cauchy sequence in V
converges to a limit in V . A complete normed vector space is called a Banach space.

Example 2.3 (The Space of Continuous Functions, C(Ω)). Let Ω ⊂ Rn be a bounded, open
set. The space C(Ω) consists of all continuous functions u : Ω → R. This is a vector space under
the usual pointwise addition and scalar multiplication. We equip it with the supremum norm

(or uniform norm):
∥u∥C(Ω) := sup

x∈Ω
|u(x)| (4)

This is a Banach space. The proof of completeness is a cornerstone of real analysis. Let (un)
be a Cauchy sequence in C(Ω). For any �xed x ∈ Ω, the sequence of real numbers (un(x)) is
a Cauchy sequence in R, since |um(x) − un(x)| ≤ ∥um − un∥C(Ω). Since R is complete, this

sequence converges to a limit, which we de�ne as u(x). This de�nes a pointwise limit function
u. We must show that this convergence is uniform and that the limit function u is continuous.
Given ϵ > 0, we can �nd N such that for all m,n > N , ∥um − un∥C(Ω) < ϵ/2. Taking the

limit as m → ∞, we get |u(x) − un(x)| ≤ ϵ/2 for all x and all n > N . This is the de�nition of
uniform convergence. The uniform limit of a sequence of continuous functions is continuous, so
u ∈ C(Ω). Thus, C(Ω) is a Banach space.

Example 2.4 (The Lebesgue Spaces, Lp(Ω)). While C(Ω) is a natural space, it is often too
restrictive for PDE theory. A much more �exible and powerful class of spaces are the Lebesgue
spaces, which are built upon Lebesgue's theory of integration.

Let Ω ⊂ Rn be a measurable set. For 1 ≤ p < ∞, the Lebesgue space Lp(Ω) is the space
of all equivalence classes of measurable functions u : Ω → R for which the p-norm is �nite:

∥u∥Lp(Ω) :=

(∫
Ω
|u(x)|pdx

)1/p

< ∞ (5)

Two functions are considered equivalent if they are equal almost everywhere (a.e.), i.e., they
di�er only on a set of measure zero. This is necessary to ensure the positive de�niteness of the
norm.

For p = ∞, the space L∞(Ω) consists of essentially bounded functions, with the norm:

∥u∥L∞(Ω) := ess supx∈Ω |u(x)| = inf{M ≥ 0 | |u(x)| ≤ M for a.e. x ∈ Ω} (6)

The fundamental result concerning these spaces is their completeness.

Theorem 2.5 (Riesz�Fischer). For any measurable set Ω and any 1 ≤ p < ∞, the space Lp(Ω)
is a Banach space.

Proof. Let (un)
∞
n=1 be a Cauchy sequence in Lp(Ω). The core of the proof is to show that this

sequence has a subsequence that converges pointwise almost everywhere to a function u, and
that this function u is in Lp(Ω) and is the limit of the original sequence in the Lp norm.

Step 1: Constructing a rapidly converging subsequence. Since (un) is Cauchy, we
can choose a subsequence (unk

) such that ∥unk+1
−unk

∥Lp < 1/2k for all k ≥ 1. Let gk = unk
and

de�ne the partial sums SK(x) =
∑K

k=1 |gk+1(x)−gk(x)|. By the triangle inequality (Minkowski's
inequality) in Lp,

∥SK∥Lp ≤
K∑
k=1

∥gk+1 − gk∥Lp <
K∑
k=1

1

2k
< 1 (7)

Let S(x) = limK→∞ SK(x) =
∑∞

k=1 |gk+1(x)− gk(x)|. By the Monotone Convergence Theorem,
∥S∥pLp =

∫
limK→∞ Sp

Kdx = limK→∞
∫
Sp
Kdx = limK→∞ ∥SK∥pLp ≤ 1. Thus, S ∈ Lp(Ω), which

implies that S(x) is �nite for almost every x ∈ Ω.
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Step 2: Pointwise convergence of the subsequence. The series
∑∞

k=1(gk+1(x)−gk(x))
converges absolutely for almost every x, because the sum of the absolute values is S(x), which
is �nite a.e. This is a telescoping series, and its convergence implies that the sequence gk(x)
converges for almost every x. Let us de�ne u(x) = g1(x) +

∑∞
k=1(gk+1(x) − gk(x)) for those x

where the series converges, and u(x) = 0 otherwise. Then gk(x) → u(x) a.e.
Step 3: Showing u ∈ Lp(Ω) and convergence in norm. We have |gk(x)| ≤ |g1(x)| +∑k−1

j=1 |gj+1(x)− gj(x)| ≤ |g1(x)|+ S(x). Since g1 and S are in Lp, so is their sum. Taking the
limit as k → ∞, we have |u(x)| ≤ |g1(x)|+ S(x) a.e. This implies that u ∈ Lp(Ω).

Now we show that the subsequence converges in norm to u. We have |gk(x)−u(x)| → 0 a.e.
Also, |gk(x)− u(x)|p ≤ (2(|g1(x)|+ S(x)))p, which is an integrable function. By the Dominated
Convergence Theorem,

lim
k→∞

∥gk − u∥pLp = lim
k→∞

∫
Ω
|gk(x)− u(x)|pdx =

∫
Ω

lim
k→∞

|gk(x)− u(x)|pdx = 0 (8)

So, the subsequence (gk) converges to u in Lp.
Step 4: Convergence of the original sequence. Finally, we use the triangle inequality

to show the original Cauchy sequence (un) converges to u. Given ϵ > 0, since (un) is Cauchy,
there is an N such that ∥un−um∥Lp < ϵ/2 for n,m > N . Since the subsequence (unk

) converges
to u, we can choose k large enough so that nk > N and ∥unk

−u∥Lp < ϵ/2. Then for any n > N ,

∥un − u∥Lp ≤ ∥un − unk
∥Lp + ∥unk

− u∥Lp < ϵ/2 + ϵ/2 = ϵ (9)

Thus, the original sequence converges to u in Lp(Ω).

Two inequalities are fundamental to the study of Lp spaces.

Theorem 2.6 (Hölder's Inequality). Let 1 ≤ p ≤ ∞ and let q be the conjugate exponent to

p, de�ned by 1
p + 1

q = 1. If u ∈ Lp(Ω) and v ∈ Lq(Ω), then their product uv is in L1(Ω), and∫
Ω
|u(x)v(x)|dx ≤ ∥u∥Lp(Ω)∥v∥Lq(Ω) (10)

Proof. The cases p = 1, q = ∞ (or vice-versa) are straightforward. For 1 < p < ∞, the proof
relies on Young's inequality: for non-negative a, b, we have ab ≤ ap

p + bq

q . Let ũ = u/∥u∥Lp and
ṽ = v/∥v∥Lq . Applying Young's inequality with a = |ũ(x)| and b = |ṽ(x)| and integrating over
Ω gives:∫

Ω
|ũ(x)ṽ(x)|dx ≤

∫
Ω

(
|ũ(x)|p

p
+

|ṽ(x)|q

q

)
dx =

1

p
∥ũ∥pLp +

1

q
∥ṽ∥qLq =

1

p
+

1

q
= 1 (11)

Substituting back the de�nitions of ũ and ṽ yields the result.

Theorem 2.7 (Minkowski's Inequality). For 1 ≤ p ≤ ∞, if u, v ∈ Lp(Ω), then their sum u+ v
is also in Lp(Ω), and

∥u+ v∥Lp(Ω) ≤ ∥u∥Lp(Ω) + ∥v∥Lp(Ω) (12)

This is the triangle inequality for the Lp norm. The proof for 1 < p < ∞ uses Hölder's
inequality:

∥u+ v∥pLp =

∫
|u+ v|pdx ≤

∫
|u||u+ v|p−1dx+

∫
|v||u+ v|p−1dx (13)

Applying Hölder's inequality to the �rst integral with exponent p for |u| and conjugate exponent
q = p/(p− 1) for |u+ v|p−1, we get:∫

|u||u+ v|p−1dx ≤ ∥u∥Lp∥u+ v∥p−1
Lp (14)

Doing the same for the second integral and combining gives ∥u + v∥pLp ≤ (∥u∥Lp + ∥v∥Lp)∥u +

v∥p−1
Lp . Dividing by ∥u+ v∥p−1

Lp yields the result.
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2.2 Hilbert Spaces: The Geometry of L2

Among the Banach spaces, one class stands out for its rich geometric structure: the Hilbert
spaces. These are Banach spaces whose norm is induced by an inner product.

De�nition 2.8 (Inner Product and Hilbert Space). An inner product on a vector space V is
a function ⟨·, ·⟩ : V × V → F satisfying for all u, v, w ∈ V and α ∈ F:

(i) Conjugate Symmetry: ⟨u, v⟩ = ⟨v, u⟩.

(ii) Linearity in the �rst argument: ⟨αu+ v, w⟩ = α⟨u,w⟩+ ⟨v, w⟩.

(iii) Positive De�niteness: ⟨u, u⟩ ≥ 0, and ⟨u, u⟩ = 0 if and only if u = 0.

An inner product space is a Hilbert space if it is complete with respect to the norm induced
by the inner product, ∥u∥ :=

√
⟨u, u⟩.

The space L2(Ω) is the canonical example of a Hilbert space in PDE theory, with the inner
product:

⟨u, v⟩L2(Ω) :=

∫
Ω
u(x)v(x)dx (15)

(For real-valued functions, the complex conjugate is unnecessary). The Cauchy�Schwarz in-
equality is a direct consequence of the properties of the inner product and is a special case of
Hölder's inequality for p = q = 2:

Theorem 2.9 (Cauchy�Schwarz Inequality). In any inner product space, |⟨u, v⟩| ≤ ∥u∥∥v∥.

Not every norm comes from an inner product. The distinguishing feature is the Parallelo-
gram Law:

Theorem 2.10 (Parallelogram Law). A norm on a vector space is induced by an inner product

if and only if it satis�es the parallelogram law:

∥u+ v∥2 + ∥u− v∥2 = 2(∥u∥2 + ∥v∥2) (16)

One can check that the Lp norms satisfy this identity only when p = 2. This is what makes
L2 so special. The inner product provides a notion of orthogonality: two vectors u, v are
orthogonal if ⟨u, v⟩ = 0. This allows for geometric constructions like orthogonal projections and
orthonormal bases, which are fundamental to many solution techniques.

Theorem 2.11 (Riesz Representation Theorem). Let H be a Hilbert space. For every continuous

linear functional L : H → F, there exists a unique vector fL ∈ H such that

L(u) = ⟨u, fL⟩ for all u ∈ H (17)

Furthermore, the mapping L 7→ fL is an isometric isomorphism between the dual space H∗ and

H itself, i.e., ∥L∥H∗ = ∥fL∥H .

Proof Sketch. The proof is constructive. If L = 0, we take fL = 0. If L ̸= 0, consider the kernel
(or null space) K = ker(L). Since L is continuous, K is a closed subspace of H. Since L ̸= 0,
K is not all of H. By the Projection Theorem for Hilbert spaces, we can �nd a non-zero vector
z0 ∈ K⊥, the orthogonal complement of K. We can normalise z0 so that ∥z0∥ = 1. We then
seek fL of the form fL = αz0. We need to �nd α such that L(u) = ⟨u, αz0⟩ = α⟨u, z0⟩. This
must hold for all u. For u = z0, we get L(z0) = α∥z0∥2 = α. So we must have α = L(z0). We
then de�ne fL = L(z0)z0. One can then verify that this choice works for all u ∈ H. Uniqueness
follows from the fact that if ⟨u, f1⟩ = ⟨u, f2⟩ for all u, then ⟨u, f1−f2⟩ = 0, and taking u = f1−f2
implies f1 = f2.

This theorem is of paramount importance. It identi�es a Hilbert space with its own dual
space, and it is the key ingredient in the proof of the Lax�Milgram theorem, which is the main
tool for establishing the existence of weak solutions to elliptic PDEs.
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3 Generalising Di�erentiation: The Theory of Distributions

The classical de�nition of a derivative, which requires the evaluation of a limit of di�erence
quotients, is fundamentally a pointwise concept. As we have seen, this is too restrictive for
many problems in PDE theory where solutions are not expected to be smooth. The theory of
distributions, or generalised functions, developed by Laurent Schwartz in the 1940s, provides a
powerful and elegant way to di�erentiate a much broader class of objects.

3.1 The Space of Test Functions

The central idea of distribution theory is to rede�ne functions and their derivatives not by their
pointwise values, but by how they act on a space of in�nitely smooth, localised �test functions�.

De�nition 3.1 (Space of Test Functions). Let Ω ⊂ Rn be an open set. The space of test
functions on Ω, denoted D(Ω) or C∞

c (Ω), is the vector space of all in�nitely di�erentiable
functions ϕ : Ω → R that have compact support in Ω. The support of a function, supp(ϕ), is
the closure of the set of points where the function is non-zero.

The requirement of compact support means that each test function vanishes outside some
bounded closed set contained within Ω. This is crucial for ensuring that boundary terms in
integration by parts always vanish.

3.2 Distributions

With this space of test functions, we can now de�ne distributions as continuous linear functionals.

De�nition 3.2 (Distribution). A distribution on Ω is a continuous linear functional on the
space of test functions D(Ω). The space of all distributions on Ω is the dual space of D(Ω),
denoted by D′(Ω).

We use the bracket notation ⟨T, ϕ⟩ to denote the action of a distribution T ∈ D′(Ω) on a
test function ϕ ∈ D(Ω). Linearity means ⟨T, aϕ1+ bϕ2⟩ = a⟨T, ϕ1⟩+ b⟨T, ϕ2⟩. Continuity means
that if ϕk → 0 in D(Ω), then ⟨T, ϕk⟩ → 0 in R.

Any locally integrable function u ∈ L1
loc

(Ω) can be identi�ed with a regular distribution
Tu via integration:

⟨Tu, ϕ⟩ :=
∫
Ω
u(x)ϕ(x)dx, ∀ϕ ∈ D(Ω) (18)

Example 3.3 (The Dirac Delta Distribution). The most famous distribution that is not regular
is the Dirac delta distribution, δx0 , centred at a point x0 ∈ Ω. It is de�ned by its action of
evaluating a test function at x0:

⟨δx0 , ϕ⟩ := ϕ(x0) (19)

This is clearly a linear functional. It is also continuous. However, one can prove that there is
no function u ∈ L1

loc
(Ω) such that

∫
u(x)ϕ(x)dx = ϕ(x0) for all test functions. Thus, δx0 is a

singular distribution.

3.3 Di�erentiation of Distributions

The true power of this framework is revealed in how it de�nes di�erentiation. We can de�ne the
derivative of any distribution, regardless of its regularity.

De�nition 3.4 (Derivative of a Distribution). Let T ∈ D′(Ω) and let α be a multi-index. The
α-th partial derivative of T , denoted DαT , is the distribution de�ned by its action on test
functions:

⟨DαT, ϕ⟩ := (−1)|α|⟨T,Dαϕ⟩, ∀ϕ ∈ D(Ω) (20)
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This de�nition is motivated by integration by parts. If u were a smooth function, we would
have

∫
(Dαu)ϕ = (−1)|α|

∫
u(Dαϕ), since the boundary terms vanish due to the compact support

of ϕ. The de�nition generalises this formula to any distribution. A remarkable consequence is
that every distribution is in�nitely di�erentiable in the distributional sense.

Example 3.5 (Derivative of the Heaviside Function). Let H be the Heaviside function in one
dimension, H(x) = 1 for x > 0 and H(x) = 0 for x < 0. It is not di�erentiable at x = 0 in
the classical sense. Its distributional derivative is the distribution H ′ whose action on a test
function ϕ ∈ D(R) is:

⟨H ′, ϕ⟩ = −⟨H,ϕ′⟩ = −
∫ ∞

−∞
H(x)ϕ′(x)dx = −

∫ ∞

0
ϕ′(x)dx = ϕ(0) (21)

This is precisely the de�nition of the Dirac delta distribution centred at 0. So, we can write the
remarkable formulaH ′ = δ0. The derivative of a jump discontinuity is a delta function, a concept
that is meaningless in classical calculus but perfectly rigorous in the theory of distributions.

3.4 Weak Derivatives

The concept of a distributional derivative leads naturally to the de�nition of a weak derivative
for functions.

De�nition 3.6 (Weak Derivative). Let u ∈ L1
loc

(Ω). A function v ∈ L1
loc

(Ω) is the α-th weak
partial derivative of u if it satis�es:∫

Ω
v(x)ϕ(x)dx = (−1)|α|

∫
Ω
u(x)(Dαϕ)(x)dx, ∀ϕ ∈ D(Ω) (22)

In other words, the weak derivative of u is a function v that represents the distributional deriva-
tive of u. If such a function v exists, we denote it by Dαu.

Example 3.7 (A Function with a Weak Derivative). Consider the function u(x) = |x| on
Ω = (−1, 1). It is not di�erentiable at x = 0. Let's �nd its weak derivative. We are looking for
a function v such that

∫ 1
−1 vϕ = −

∫ 1
−1 |x|ϕ

′dx. We split the integral:

−
∫ 1

−1
|x|ϕ′dx = −

∫ 0

−1
(−x)ϕ′dx−

∫ 1

0
xϕ′dx (23)

Integrating by parts on each interval gives:∫ 0

−1
ϕ(x)dx−

∫ 1

0
ϕ(x)dx =

∫ 1

−1
sgn(x)ϕ(x)dx (24)

where sgn(x) is the sign function. By comparing this with the de�nition of the weak derivative,
we see that the weak derivative of |x| is the function v(x) = sgn(x), which is a perfectly well-
de�ned function in L∞(−1, 1). This demonstrates that a function can fail to be classically
di�erentiable at a point but still possess a weak derivative that is a regular function.
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Figure 2: Sobolev Spaces and Weak Derivatives. This �gure illustrates the key concepts of
Sobolev space theory. (Top left) The function u(x) = |x|, which is not classically di�erentiable
at x = 0 but possesses a weak derivative. (Top middle) The weak derivative Du = sgn(x),
which is a well-de�ned function in L∞(−1, 1), demonstrating that weak derivatives can exist
even when classical derivatives do not. (Top right) Sobolev embedding hierarchy for bounded
domains in R3, showing the relationships between various function spaces. Higher regularity
spaces (e.g., H2) embed into lower regularity spaces (e.g., H1, L2), and when kp > n, Sobolev
functions are continuous. (Bottom left) Comparison of Lp norms for a smooth, compactly
supported function, illustrating how di�erent norms measure di�erent aspects of a function's
size. (Bottom middle) Functions in H1

0 (0, π) that vanish at the boundaries, illustrating the
Poincaré inequality, which states that the L2 norm can be controlled by the L2 norm of the
gradient. (Bottom right) Illustration of the Rellich�Kondrachov compactness theorem: a
bounded sequence in H1 (here, the eigenfunctions sin(nπx)) has a convergent subsequence in
L2, a fundamental tool for existence proofs.

4 Sobolev Spaces: The Modern Setting for PDEs

We have established the abstract framework of Banach and Hilbert spaces and generalised the
notion of di�erentiation using distribution theory. We are now in a position to de�ne the most
important class of function spaces for the modern study of partial di�erential equations: the
Sobolev spaces.

4.1 De�nition and Properties

De�nition 4.1 (Sobolev Space W k,p(Ω)). Let Ω be an open set in Rn, let k be a non-negative
integer, and let 1 ≤ p ≤ ∞. The Sobolev space W k,p(Ω) is de�ned as the set of all functions
u ∈ Lp(Ω) such that for every multi-index α with |α| ≤ k, the weak derivative Dαu exists and
belongs to Lp(Ω).

W k,p(Ω) = {u ∈ Lp(Ω) |Dαu ∈ Lp(Ω) for all |α| ≤ k} (25)
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This space is equipped with the norm:

∥u∥Wk,p(Ω) =

 ∑
|α|≤k

∥Dαu∥pLp(Ω)

1/p

for 1 ≤ p < ∞ (26)

A fundamental theorem, which we state without proof, is that these spaces are complete.

Theorem 4.2 (Completeness of Sobolev Spaces). For any k ≥ 0 and 1 ≤ p ≤ ∞, the Sobolev

space W k,p(Ω) is a Banach space.

In the special case where p = 2, the Sobolev spaces are Hilbert spaces, denoted by Hk(Ω) =
W k,2(Ω). The inner product is given by:

⟨u, v⟩Hk(Ω) =
∑
|α|≤k

⟨Dαu,Dαv⟩L2(Ω) =
∑
|α|≤k

∫
Ω
(Dαu)(x)(Dαv)(x)dx (27)

4.2 Boundary Values and the Spaces Hk
0 (Ω)

When solving PDEs, we almost always have to impose boundary conditions. In the variational
framework, this is handled by working in a subspace of the full Sobolev space.

De�nition 4.3 (The Space W k,p
0 (Ω)). The space W k,p

0 (Ω) is de�ned as the closure of the space
of test functions C∞

c (Ω) with respect to the W k,p(Ω) norm. The corresponding Hilbert space
for p = 2 is denoted Hk

0 (Ω).

4.3 The Sobolev Embedding Theorems

One of the most powerful aspects of Sobolev space theory is the collection of results known as
the Sobolev embedding theorems. These theorems provide precise information about the
regularity of functions in a Sobolev space.

Theorem 4.4 (Sobolev Embedding Theorem). Let Ω be a bounded domain in Rn with a su�-

ciently smooth boundary.

1. If kp < n, then W k,p(Ω) is continuously embedded in Lq(Ω) for all 1 ≤ q ≤ p∗, where
p∗ = np

n−kp is the Sobolev conjugate exponent.

2. If kp = n, then W k,p(Ω) is continuously embedded in Lq(Ω) for all 1 ≤ q < ∞.

3. If kp > n, then W k,p(Ω) is continuously embedded in the space of Hölder continuous

functions C0,γ(Ω) for some γ > 0. In particular, the functions are continuous and bounded.

Theorem 4.5 (Rellich�Kondrachov Compactness Theorem). Let Ω be a bounded domain in Rn

with a smooth boundary. If kp < n, the embedding of W k,p(Ω) into Lq(Ω) is compact for all

1 ≤ q < p∗. If kp > n, the embedding into C(Ω) is also compact.

4.4 The Poincaré Inequality

A crucial tool for establishing the coercivity of bilinear forms associated with elliptic operators
is the Poincaré inequality.

Theorem 4.6 (Poincaré Inequality). Let Ω be a bounded, connected open set in Rn. Then there

exists a constant CP > 0, depending only on Ω, such that for every function u ∈ H1
0 (Ω),

∥u∥L2(Ω) ≤ CP ∥∇u∥L2(Ω) (28)
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Proof Sketch. We prove this for the case where Ω is bounded in the x1 direction, say Ω ⊂ {x ∈
Rn|a < x1 < b}. For any u ∈ C∞

c (Ω), we can write for any x = (x1, ..., xn) ∈ Ω:

u(x) =

∫ x1

a

∂u

∂x1
(y1, x2, ..., xn)dy1 (29)

By the Cauchy�Schwarz inequality for integrals,

|u(x)|2 ≤ (b− a)

∫ b

a
|∇u|2dy1 (30)

Integrating over Ω gives ∥u∥L2 ≤ (b − a)∥∇u∥L2 . The result for general u ∈ H1
0 (Ω) follows by

density.

5 The Lax�Milgram Theorem and Elliptic Equations

We now have all the tools to prove the main existence theorem for linear elliptic PDEs.

Theorem 5.1 (Lax�Milgram). Let H be a Hilbert space, a : H ×H → R a bilinear form, and

L : H → R a linear functional. Suppose that:

(i) a is continuous: there exists M > 0 such that |a(u, v)| ≤ M∥u∥H∥v∥H for all u, v ∈ H.

(ii) a is coercive: there exists α > 0 such that a(u, u) ≥ α∥u∥2H for all u ∈ H.

(iii) L is continuous: there exists C > 0 such that |L(v)| ≤ C∥v∥H for all v ∈ H.

Then there exists a unique u ∈ H such that

a(u, v) = L(v) ∀v ∈ H (31)

Proof Sketch. The proof uses the Riesz Representation Theorem to associate the bilinear form
a(u, v) with an operator A : H → H such that a(u, v) = ⟨Au, v⟩. The problem becomes solving
Au = f for some f ∈ H. The coercivity of a is used to show that A is invertible, guaranteeing
a unique solution.

Example 5.2 (The Dirichlet Problem for the Poisson Equation). Consider −∆u = f in Ω with
u = 0 on ∂Ω. We seek a weak solution in H1

0 (Ω). The weak formulation is: �nd u ∈ H1
0 (Ω) such

that ∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx ∀v ∈ H1

0 (Ω) (32)

We de�ne a(u, v) =
∫
∇u · ∇v and L(v) =

∫
fv. Continuity of a and L follows from Cauchy�

Schwarz. Coercivity of a follows from the Poincaré inequality: a(u, u) = ∥∇u∥2L2 ≥ 1
C2

P
∥u∥2L2 .

This gives a(u, u) ≥ α∥u∥2H1 . The Lax�Milgram theorem then guarantees a unique weak solu-
tion.
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Figure 3: Lax�Milgram Theorem and Variational Formulation. This �gure illustrates
the abstract framework for solving elliptic PDEs via the Lax�Milgram theorem. (Top left)

Visualisation of a bilinear form a(u, v) as a continuous mapping from H × H → R. (Top

middle) The coercivity condition a(u, u) ≥ α∥u∥2, which ensures that the bilinear form is
bounded below by a positive multiple of the square of the norm. This is the key to invertibility.
(Top right) The weak formulation of a PDE, showing the relationship between the solution u,
test function v, and their derivatives. The weak form

∫
∇u·∇v =

∫
fv is obtained by integration

by parts from the strong form −∆u = f . (Bottom left) Solution to the Poisson equation
−∆u = 1 on the unit square with homogeneous Dirichlet boundary conditions, obtained via
the Lax�Milgram theorem. (Bottom middle) The energy functional J(u) = 1

2a(u, u)− L(u),
whose minimiser is the weak solution to the PDE. The variational formulation transforms the
PDE problem into an optimisation problem. (Bottom right) Diagram illustrating the Riesz
Representation Theorem, which establishes an isometric isomorphism between a Hilbert space
H and its dual H∗. Every continuous linear functional L is represented by an inner product
with a unique element u ∈ H. This theorem is the foundation of the Lax�Milgram theorem.

6 Spectral Theory of Compact Self-Adjoint Operators

For many linear PDEs, the solution can be represented as a series expansion in terms of eigen-
functions of the di�erential operator. The abstract framework for this is the spectral theory of
compact operators.

De�nition 6.1 (Compact Operator). A linear operator K : H1 → H2 between Hilbert spaces
is compact if it maps bounded sets in H1 to precompact sets in H2. (A set is precompact if its
closure is compact).

Theorem 6.2 (Spectral Theorem for Compact Self-Adjoint Operators). Let H be a separable

Hilbert space and let K : H → H be a compact, self-adjoint operator. Then there exists an or-

thonormal sequence (ek)
∞
k=1 of eigenvectors of K and a corresponding sequence of real eigenvalues
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(λk)
∞
k=1 with λk → 0 such that

Kx =
∞∑
k=1

λk⟨x, ek⟩ek ∀x ∈ H (33)

Application: The Inverse Laplacian. Consider the operator A = −∆ with domain
H2(Ω) ∩ H1

0 (Ω). Its inverse, A−1 : L2(Ω) → H1
0 (Ω), which maps a source function f to the

solution u of the Poisson equation, can be shown to be a compact operator from L2(Ω) to itself.
It is also self-adjoint. Therefore, the spectral theorem applies. The eigenfunctions of A−1 are
the same as the eigenfunctions of A, and the eigenvalues are the reciprocals. This guarantees
the existence of an orthonormal basis of L2(Ω) consisting of eigenfunctions of the Laplacian.

7 Conclusion

This chapter has built the modern functional analytic framework for PDEs. We have journeyed
from the classical equations to the abstract spaces where their solutions live. We de�ned weak
derivatives, Sobolev spaces, and proved the fundamental existence theorem for linear elliptic
equations. This foundation will allow us to tackle more complex problems, including time-
dependent equations, nonlinear equations, and questions of solution regularity in the chapters
to come.
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Chapter 2

Classical Theory of Elliptic Equations

1 Introduction: The Nature of Elliptic Problems

Having established the functional analytic foundations in the previous chapter, we now turn
our attention to the �rst of the three major classes of partial di�erential equations: the el-
liptic equations. Elliptic PDEs are arguably the most fundamental, as they typically describe
steady-state phenomena, equilibrium con�gurations, and potentials. They are characterised by
a strong smoothing property: their solutions are often in�nitely di�erentiable in the interior of
the domain, even when the boundary data or source terms are irregular. This is in stark contrast
to hyperbolic equations, which propagate singularities, and parabolic equations, which smooth
solutions only in the forward time direction.

The archetypal elliptic equation is Laplace's equation, ∆u = 0. Its inhomogeneous counter-
part, the Poisson equation, −∆u = f , is equally fundamental. A general second-order linear
elliptic operator L in a domain Ω ⊂ Rn takes the form:

Lu = −
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u (2.1)

The operator L is de�ned as elliptic at a point x if the matrix of coe�cients of the second-
order terms, A(x) = (aij(x)), is positive de�nite. That is, there exists a constant θ > 0 such
that for all ξ ∈ Rn,

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2 (2.2)

This condition ensures that the operator behaves, in a local sense, like the Laplacian. The
theory of elliptic equations is a rich and beautiful subject that combines techniques from clas-
sical analysis, potential theory, and functional analysis. This chapter focuses on the classical

theory, which seeks to establish the existence, uniqueness, and regularity of solutions that are
continuously di�erentiable up to a certain order (i.e., classical solutions).

We will begin by exploring the fundamental properties of harmonic functions, which are
the solutions to Laplace's equation. We will prove the Mean Value Property and the Maximum
Principle, two cornerstone results that reveal the deep geometric and analytic structure of elliptic
problems. We will then develop the theory of Green's functions, which provide an integral
representation for the solution of the Poisson equation. This will lead us to the classical method
of Perron for constructing solutions to the Dirichlet problem for Laplace's equation.

Finally, we will touch upon the regularity of solutions. A central theme in elliptic theory
is that solutions are often much smoother than one might initially expect. We will discuss
the concept of elliptic regularity, which states that if the coe�cients of the operator and the
source term are smooth, then any weak solution is also smooth. This theory culminates in the
celebrated Schauder estimates, which provide a priori bounds on the norms of solutions in Hölder
spaces and are a key tool in proving the existence of classical solutions to general linear elliptic
equations.

14
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2 Fundamental Properties of Harmonic Functions

We begin our study of elliptic equations by examining the solutions to the most fundamental
elliptic PDE: Laplace's equation, ∆u = 0. Functions that satisfy Laplace's equation in a domain
Ω are called harmonic functions.

De�nition 2.1 (Harmonic Function). A function u ∈ C2(Ω) is said to be harmonic in an open
set Ω ⊂ Rn if it satis�es Laplace's equation:

∆u =

n∑
i=1

∂2u

∂x2i
= 0 for all x ∈ Ω (2.3)

Harmonic functions possess a remarkable array of properties that are not shared by solutions
to other types of PDEs. These properties reveal a deep connection between the Laplacian
operator, geometry, and complex analysis. Two of the most important are the mean value
property and the maximum principle.

Figure 1: Harmonic Functions and the Mean Value Property. This comprehensive �gure
illustrates the fundamental properties of harmonic functions. (Top left) A harmonic function
u(x, y) = x2 − y2, which is the real part of the complex analytic function z2. The function
satis�es ∆u = 0 everywhere. (Top middle) Illustration of the mean value property: the
value of a harmonic function at the centre of a circle equals the average of its values on the
circle. For u(x, y) = x2 − y2 at the origin, both the centre value and the mean are zero. (Top
right) The spherical average of a harmonic function is constant as a function of the radius, a
direct consequence of harmonicity. (Bottom left) Another example of a harmonic function:
u(x, y) = ex cos(y), the real part of ez. (Bottom middle) A harmonic function in polar
coordinates, u(r, θ) = r2 cos(2θ), demonstrating the variety of forms harmonic functions can
take. (Bottom right) Comparison of the Laplacian for harmonic and non-harmonic functions,
showing that ∆u = 0 is the de�ning characteristic.
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2.1 The Mean Value Property

The mean value property states that the value of a harmonic function at the centre of a ball
is equal to the average of its values over the surface of that ball. This is a powerful rigidity
property and is, in fact, equivalent to being harmonic.

Theorem 2.2 (Mean Value Property for Harmonic Functions). If u ∈ C2(Ω) is a harmonic

function in a domain Ω ⊂ Rn, then for any ball B(x, r) such that B(x, r) ⊂ Ω, we have:

u(x) =
1

|∂B(x, r)|

∫
∂B(x,r)

u(y) dS(y) (2.4)

where |∂B(x, r)| = nα(n)rn−1 is the surface area of the sphere ∂B(x, r), and α(n) is the volume

of the unit ball in Rn.

Proof. Let ϕ(r) be the average value of u over the sphere ∂B(x, r):

ϕ(r) =
1

nα(n)rn−1

∫
∂B(x,r)

u(y) dS(y) (2.5)

We want to show that ϕ(r) is constant for 0 < r < R (for some R such that B(x,R) ⊂ Ω) and
that its value is u(x). We will do this by showing that ϕ′(r) = 0.

We make a change of variables in the integral. Let y = x + rz where z ∈ ∂B(0, 1). Then
dS(y) = rn−1dS(z).

ϕ(r) =
1

nα(n)

∫
∂B(0,1)

u(x+ rz) dS(z) (2.6)

Now, we di�erentiate with respect to r under the integral sign:

ϕ′(r) =
1

nα(n)

∫
∂B(0,1)

∇u(x+ rz) · z dS(z) (2.7)

We can rewrite the integrand using the change of variables y = x+ rz. The outer unit normal
to the sphere ∂B(x, r) at the point y is ν(y) = y−x

r = z. So, ∇u(y) · z = ∇u(y) · ν(y) = ∂u
∂ν (y).

Returning to the original variables, we have:

ϕ′(r) =
1

nα(n)rn−1

∫
∂B(x,r)

∂u

∂ν
(y) dS(y) (2.8)

Now we apply the Divergence Theorem to the vector �eld ∇u over the ball B(x, r):∫
∂B(x,r)

∂u

∂ν
(y) dS(y) =

∫
B(x,r)

div(∇u)(y) dy =

∫
B(x,r)

∆u(y) dy (2.9)

Since u is harmonic, ∆u = 0 everywhere in Ω, and thus in B(x, r). Therefore, the integral is
zero. This implies that ϕ′(r) = 0 for all r such that the ball is contained in Ω. Thus, ϕ(r) is a
constant.

To �nd the value of this constant, we take the limit as r → 0:

lim
r→0

ϕ(r) = lim
r→0

1

|∂B(x, r)|

∫
∂B(x,r)

u(y) dS(y) (2.10)

Since u is continuous, as r → 0, the values of u(y) on the sphere ∂B(x, r) approach u(x). The
average value must therefore also approach u(x). So, limr→0 ϕ(r) = u(x).

Since ϕ(r) is constant, we must have ϕ(r) = u(x) for all valid r. This completes the proof.

It is a remarkable fact that the converse is also true: any continuous function that satis�es
the mean value property in a domain must be harmonic in that domain. This shows that the
mean value property is a complete characterisation of harmonicity.



Chapter 2: Classical Theory of Elliptic Equations 17

2.2 The Maximum Principle

The maximum principle is one of the most important and powerful tools in the theory of ellip-
tic equations. It states that a non-constant harmonic function cannot attain its maximum or
minimum value in the interior of its domain. The maximum and minimum must occur on the
boundary.

Theorem 2.3 (Strong Maximum Principle). Let Ω ⊂ Rn be an open, bounded, and connected

domain. Suppose u ∈ C2(Ω) ∩ C(Ω) is a harmonic function in Ω.
(i) Then the maximum and minimum values of u are attained on the boundary ∂Ω:

max
Ω

u = max
∂Ω

u and min
Ω

u = min
∂Ω

u (2.11)

(ii) Furthermore, if u attains its maximum or minimum at an interior point of Ω, then u
must be a constant function throughout Ω.

Proof. We will prove the statement for the maximum; the proof for the minimum is analogous
(or can be obtained by applying the maximum principle to −u).

Let M = maxΩ u. We want to show that if there exists a point x0 ∈ Ω such that u(x0) = M ,
then u(x) = M for all x ∈ Ω.

Let A = {x ∈ Ω |u(x) = M}. By the continuity of u, the set A is a closed subset of Ω. We
will now show that A is also an open subset of Ω.

Suppose x0 ∈ A. Since Ω is open, there exists a ball B(x0, r) such that B(x0, r) ⊂ Ω. By
the Mean Value Property,

u(x0) =
1

|B(x0, r)|

∫
B(x0,r)

u(y) dy (2.12)

(Here we use the volume average, which is equivalent to the surface average). Since u(x0) = M
and u(y) ≤ M for all y ∈ B(x0, r), this equation can only hold if u(y) = M for almost every
y ∈ B(x0, r). Since u is continuous, this implies that u(y) = M for all y ∈ B(x0, r).

This means that the entire ball B(x0, r) is contained in the set A. This proves that A is an
open set.

So, A is a non-empty (since we assumed x0 ∈ A), open, and closed subset of the connected
set Ω. The only such subset is Ω itself. Therefore, A = Ω, which means that u(x) = M for all
x ∈ Ω.

This proves part (ii). Part (i) follows directly. If u is not constant, its maximum cannot be
in the interior, so it must be on the boundary. If u is constant, its maximum is everywhere,
including the boundary.
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Figure 2: The Maximum Principle for Harmonic Functions. This �gure demonstrates the
maximum principle and its consequences. (Top left) A harmonic function on a square domain,
showing that the maximum value occurs on the boundary. (Top middle) A cross-section of
the harmonic function, clearly showing that the interior values are bounded by the boundary
values. (Top right) A non-harmonic function u(x, y) = x(1− x)y(1− y) that vanishes on the
boundary but is positive in the interior, violating the maximum principle (because ∆u < 0).
(Bottom left) Illustration of the strong maximum principle: if a harmonic function attains
its maximum at an interior point, it must be constant. (Bottom middle) The comparison
principle: if two harmonic functions satisfy u1 ≤ u2 on the boundary, then u1 ≤ u2 throughout
the domain. (Bottom right) Uniqueness of the Dirichlet problem via the maximum principle:
if two solutions exist, their di�erence is a harmonic function that vanishes on the boundary,
hence must be zero everywhere.

The maximum principle has several immediate and important consequences.

Corollary 2.4 (Uniqueness for the Dirichlet Problem). Let Ω be a bounded, connected domain.

The Dirichlet problem for Laplace's equation,{
∆u = 0 in Ω

u = g on ∂Ω
(2.13)

has at most one solution u ∈ C2(Ω) ∩ C(Ω).

Proof. Suppose u1 and u2 are two solutions. Let w = u1 − u2. Then w satis�es:{
∆w = ∆u1 −∆u2 = 0− 0 = 0 in Ω

w = u1 − u2 = g − g = 0 on ∂Ω
(2.14)

By the Maximum Principle, the maximum and minimum of w must be on the boundary ∂Ω.
But on the boundary, w = 0. Therefore, for all x ∈ Ω, we have 0 ≤ w(x) ≤ 0, which implies
w(x) = 0 for all x ∈ Ω. Thus, u1 = u2.
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3 Green's Functions and Representation Formulae

While the maximum principle guarantees the uniqueness of solutions to the Dirichlet problem,
it does not provide a method for constructing them. The theory of Green's functions provides
a powerful tool for obtaining explicit integral representation formulas for the solutions.

The idea is to �nd a fundamental solution for the Laplacian, which represents the potential
generated by a point source. The solution to the Poisson equation can then be represented as
a convolution of the source term with this fundamental solution. However, the fundamental
solution does not, in general, satisfy the boundary conditions. The Green's function is a modi-
�cation of the fundamental solution that is tailored to the speci�c geometry of the domain and
satis�es the desired boundary conditions.

3.1 The Fundamental Solution

We seek a solution to the equation −∆u = δ0, where δ0 is the Dirac delta distribution at the
origin. This solution, denoted by Φ, is called the fundamental solution of the Laplacian. It
represents the potential generated by a unit point charge at the origin.

Assuming the solution is radially symmetric, i.e., Φ(x) = ϕ(|x|), we can solve the equation.
For x ̸= 0, we have ∆Φ = 0. The radial form of the Laplacian gives an ODE for ϕ(r). Solving
this ODE yields:

Φ(x) =

{
− 1

2π log |x| if n = 2
1

n(n−2)α(n)
1

|x|n−2 if n ≥ 3
(2.15)

where α(n) is the volume of the unit ball in Rn. Note that the fundamental solution is
singular at the origin and is not in L1

loc(Rn).
Using this fundamental solution, we can derive a representation formula for any smooth

function u.

Theorem 3.1 (Representation Formula). Let u ∈ C2(Ω). Then for any x ∈ Ω:

u(x) =

∫
∂Ω

(
u(y)

∂Φ(y − x)

∂ν(y)
− Φ(y − x)

∂u(y)

∂ν(y)

)
dS(y)−

∫
Ω
Φ(y − x)∆u(y) dy (2.16)

This formula is derived from Green's second identity.

This formula shows that the value of u at any point x in the interior of Ω is determined by
the values of u and its normal derivative on the boundary, and the values of ∆u in the interior.
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Figure 3: Fundamental Solutions and Green's Functions. This �gure illustrates the
construction and application of Green's functions. (Top left) The fundamental solution in 2D,
Φ(x) = − 1

2π log |x|, which is singular at the origin and represents the potential from a point
source. (Top middle) The fundamental solution in 3D, Φ(x) = 1

4π|x| , the Coulomb potential.
(Top right) The method of images for a half-space: the Green's function is constructed by
placing an image charge of opposite sign at the re�ected point, ensuring the potential vanishes
on the boundary. (Bottom left) The Green's function for a disk, constructed using the method
of images with inversion. (Bottom middle) Illustration of the representation formula: the
solution u(x) is expressed as an integral involving the Green's function and the source term
f . (Bottom right) The Poisson integral formula for a disk, giving the solution to Laplace's
equation with prescribed boundary data.

3.2 Green's Function for a Domain

The representation formula is not yet a solution to the Dirichlet problem, because it involves
both u and its normal derivative on the boundary. For the Dirichlet problem, only u is prescribed
on the boundary. The idea of the Green's function is to correct the fundamental solution so that
the term involving the unknown normal derivative vanishes.

De�nition 3.2 (Green's Function). For a domain Ω, theGreen's functionG(x, y) is a function
of two variables x, y ∈ Ω de�ned for each �xed x ∈ Ω as:

G(x, y) = Φ(y − x)− ϕx(y) (2.17)

where the corrector function ϕx(y) is a harmonic function of y in Ω that solves the boundary
value problem: {

∆yϕ
x = 0 in Ω

ϕx(y) = Φ(y − x) for y ∈ ∂Ω
(2.18)

By construction, for a �xed x, the Green's function G(x, y) satis�es:
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1. G(x, y) is harmonic in y for y ̸= x.

2. G(x, y) = 0 for y ∈ ∂Ω.

3. G(x, y) has the same singularity as Φ(y − x) at y = x.

With the Green's function, we can now derive a solution formula for the Poisson equation
with homogeneous Dirichlet boundary conditions.

Theorem 3.3 (Solution using Green's Function). If a Green's function G(x, y) exists for the

domain Ω, then the solution to the Dirichlet problem{
−∆u = f in Ω

u = g on ∂Ω
(2.19)

is given by the formula:

u(x) =

∫
Ω
G(x, y)f(y) dy −

∫
∂Ω

g(y)
∂G(x, y)

∂ν(y)
dS(y) (2.20)

This formula is a remarkable achievement. It provides an explicit solution to the boundary
value problem, provided that we can �nd the Green's function for the domain. The problem of
solving the PDE is thus reduced to the problem of �nding the Green's function.

3.3 The Method of Images

For simple domains with high degrees of symmetry, such as a half-space or a ball, the Green's
function can be constructed explicitly using the method of images. The idea is to place a
�ctitious `image charge` outside the domain in such a way that the potential on the boundary
is zero.

Example: Green's function for a half-space

Let Ω = Rn
+ = {x = (x1, ..., xn) ∈ Rn |xn > 0}. The boundary is the hyperplane ∂Ω =

{xn = 0}. For a point x = (x′, xn) ∈ Ω, its re�ection across the boundary is x̃ = (x′,−xn). The
corrector function is chosen to be the potential of a point charge of opposite sign located at the
re�ected point x̃:

ϕx(y) = Φ(y − x̃) (2.21)

One can verify that for y ∈ ∂Ω, we have |y − x| = |y − x̃|, and so ϕx(y) = Φ(y − x) on the
boundary. The Green's function is then:

G(x, y) = Φ(y − x)− Φ(y − x̃) (2.22)

Example: Green's function for a ball

For a ball B(0, R), the re�ection is an inversion with respect to the sphere. For a point
x ∈ B(0, R), its image point is x̃ = R2

|x|2x. The Green's function for the ball is then given by:

G(x, y) = Φ(y − x)− Φ

(
|x|
R

(y − x̃)

)
(2.23)

From this, one can derive the famous Poisson integral formula for the solution of Laplace's
equation in a ball.
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4 Perron's Method and the Solution of the Dirichlet Problem

The method of Green's functions is very powerful, but it relies on our ability to �nd the Green's
function for a given domain. For general domains, this is not possible. Perron's method, devel-
oped by Oskar Perron in the 1920s, provides a way to prove the existence of a solution to the
Dirichlet problem for Laplace's equation on a much wider class of domains, without explicitly
constructing the solution.

The method is a beautiful example of the power of real analysis. The idea is to construct
the solution as the supremum of a family of `subharmonic' functions that lie below the desired
boundary data.

4.1 Subharmonic and Superharmonic Functions

We �rst need to de�ne the classes of functions that will be used to `sandwich' the solution.

De�nition 4.1 (Subharmonic and Superharmonic Functions). Let Ω ⊂ Rn be an open set. A
function u : Ω → [−∞,∞) is subharmonic if:

(i) u is upper semi-continuous.

(ii) For every ball B(x, r) ⊂ Ω, u satis�es the sub-mean value property:

u(x) ≤ 1

|∂B(x, r)|

∫
∂B(x,r)

u(y) dS(y) (2.24)

A function v is superharmonic if −v is subharmonic.

For smooth functions, being subharmonic is equivalent to having ∆u ≥ 0. Subharmonic
functions can be thought of as functions that are `more concave' than harmonic functions.
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Figure 4: Perron's Method and Subharmonic Functions. This �gure illustrates the key
concepts of Perron's method. (Top left) An example of a subharmonic function u = x2 +
y2, which satis�es ∆u = 4 > 0. (Top middle) The sub-mean value property: the value
at the centre is less than or equal to the average on the circle. (Top right) The Perron
family Sg consists of all subharmonic functions dominated by the boundary data g. The Perron
solution is the supremum of this family. (Bottom left) A barrier function at a boundary
point: a superharmonic function that is positive in the domain and vanishes at the boundary
point. (Bottom middle) Regular vs irregular boundary points: points satisfying an exterior
cone condition are regular. (Bottom right) Convergence of the Perron method: taking the
supremum over larger subfamilies approximates the true solution.

4.2 The Perron Family and the Perron Solution

Now, let's consider the Dirichlet problem for Laplace's equation on a bounded domain Ω with
boundary data g ∈ C(∂Ω).

We de�ne the Perron family of subharmonic functions, denoted Sg, as the set of all sub-
harmonic functions v in Ω such that:

lim sup
x→y

v(x) ≤ g(y) for all y ∈ ∂Ω (2.25)

This condition means that the functions in the Perron family are `dominated' by the boundary
data g. The family Sg is non-empty, since the constant function v(x) = min∂Ω g is in it.

We can now de�ne the Perron solution.

De�nition 4.2 (Perron Solution). The Perron solution u to the Dirichlet problem is de�ned
as the pointwise supremum of the functions in the Perron family:

u(x) := sup{v(x) | v ∈ Sg} for x ∈ Ω (2.26)

The main result of Perron's method is that this function u is, under certain conditions on
the domain, the harmonic function we are looking for.
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Theorem 4.3 (Perron's Theorem). Let Ω be a bounded open set. The Perron solution u de�ned

above is harmonic in Ω.

Proof Sketch. The proof is intricate and relies on several key lemmas.

1. The supremum of a family of subharmonic functions is not necessarily subharmonic. How-
ever, one can show that the upper semi-continuous regularization of the supremum is
subharmonic.

2. Let v1, v2 ∈ Sg. Then max(v1, v2) is also subharmonic and in Sg. This shows that the
Perron family is `directed upwards'.

3. For any point x ∈ Ω and any ball B around x, one can construct a `lifting' of any function
v ∈ Sg to a new function V which is also in Sg, is equal to v outside the ball, and is
harmonic inside the ball. This lifting process increases the value of the function inside the
ball.

4. Using this lifting property, one can show that the Perron solution u must satisfy the mean
value property, and is therefore harmonic.

4.3 Barrier Functions and Regular Points

Perron's theorem tells us that the function u we constructed is harmonic. However, it does not
guarantee that u actually attains the prescribed boundary values g. That is, we do not yet know
if limx→y u(x) = g(y) for y ∈ ∂Ω.

This is where the concept of a barrier function comes in. A barrier function is a function
that `traps' the solution at a boundary point, forcing it to take on the correct value.

De�nition 4.4 (Barrier). A point y0 ∈ ∂Ω is called a regular point for the Dirichlet problem
if for every continuous function g on ∂Ω, the Perron solution u satis�es limx→y0 u(x) = g(y0).
A point is regular if there exists a barrier at that point. A barrier at y0 is a superharmonic
function w de�ned on Ω such that w > 0 on Ω and limx→y0 w(x) = 0.

The existence of a barrier at every point on the boundary is a purely geometric condition
on the domain Ω. For example, if the boundary of Ω satis�es an exterior cone condition

at every point (meaning that at every boundary point, one can place a small cone that lies
entirely outside Ω), then every point on the boundary is regular. This condition is satis�ed by
all domains with C1 boundaries, and many other domains with corners.

If every point on the boundary of Ω is regular, then Perron's method provides a complete
solution to the classical Dirichlet problem for Laplace's equation.

5 Regularity of Solutions

A central theme in the theory of elliptic equations is that of elliptic regularity. This refers
to the remarkable property that weak solutions to elliptic equations are often much smoother
than one would expect from the data. For instance, if the source term f in the Poisson equation
−∆u = f is smooth, then the solution u is also smooth.

5.1 Interior Regularity

We have already seen a hint of this in the fact that any continuous function satisfying the mean
value property is automatically C∞. This is a general feature of harmonic functions.
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Theorem 5.1 (Interior Regularity for Laplace's Equation). If u ∈ L1
loc(Ω) is a weak solution to

Laplace's equation (i.e.,
∫
u∆ϕ = 0 for all ϕ ∈ C∞

c (Ω)), then u is equal almost everywhere to a

function that is C∞(Ω) and harmonic in the classical sense.

This is a powerful result. It says that for Laplace's equation, the concept of a weak solution
is not really more general than that of a classical solution in the interior of the domain. The
proof involves convolving the weak solution with a family of smooth molli�ers and showing that
the resulting smooth functions converge to a smooth solution.

For the general elliptic equation Lu = f , the regularity of the solution depends on the
regularity of the coe�cients of the operator L and the source term f .

Theorem 5.2 (Interior Regularity for General Elliptic Equations). Let L be a uniformly elliptic

operator with coe�cients aij , bi, c that are C∞(Ω). If u ∈ H1(Ω) is a weak solution to Lu = f
and f ∈ C∞(Ω), then u ∈ C∞(Ω).

Figure 5: Elliptic Regularity and Smoothness of Solutions. This �gure demonstrates
the regularity properties of elliptic equations. (Top left) Interior regularity: even with rough
boundary data, the solution is smooth in the interior. (Top middle) The smoothing e�ect of
elliptic operators: a discontinuous source term f produces a C2 solution u. (Top right) The
elliptic regularity hierarchy: the smoothness of the source term f determines the smoothness of
the solution u. If f ∈ Ck,α, then u ∈ Ck+2,α. (Bottom left) Illustration of Schauder estimates:
the norms of the solution and its derivatives are controlled by the norm of the source term.
(Bottom middle) Boundary regularity: when the boundary and data are smooth, the solution
is smooth up to the boundary. (Bottom right) Loss of regularity at a re-entrant corner: the
solution develops a singularity at corners with angles greater than π.

5.2 Regularity up to the Boundary

Obtaining regularity of the solution up to the boundary is a more delicate matter, as it depends
on the smoothness of the boundary itself. The theory for this is much more involved and
culminates in the Schauder estimates.
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The Schauder estimates provide a priori bounds for the solutions of elliptic equations in
Hölder spaces. For an elliptic operator L with Hölder continuous coe�cients and a source term
f that is also Hölder continuous, the Schauder interior estimates state that the C2,α norm of the
solution u in any compact subdomain is bounded by the Cα norm of f and the L∞ norm of u.

Theorem 5.3 (Schauder Interior Estimates). Let u ∈ C2,α(Ω) be a solution of Lu = f in Ω.
Then for any subdomain Ω′ ⋐ Ω, there is a constant C such that

∥u∥C2,α(Ω′) ≤ C(∥f∥Cα(Ω) + ∥u∥L∞(Ω)) (2.27)

There are also Schauder estimates up to the boundary, which require the boundary and
the boundary data to be su�ciently smooth. These estimates are a key tool for proving the
existence of classical solutions to the Dirichlet problem for general linear elliptic equations using
the method of continuity.

6 Applications of Elliptic Equations

Elliptic equations arise naturally in a wide variety of physical and geometric contexts. We brie�y
survey some of the most important applications.

Figure 6: Applications of Elliptic Equations. This �gure illustrates various physical and
geometric applications of elliptic PDEs. (Top left) Electrostatic potential from a point charge,
satisfying Laplace's equation ∆Φ = 0 outside the source. (Top middle) Steady-state heat
distribution in a plate with prescribed boundary temperatures, governed by ∆T = 0. (Top

right) De�ection of a circular membrane under uniform load, modelled by the Poisson equation
−∆u = f . (Bottom left) Gravitational potential from two point masses, illustrating the
Poisson equation ∆Φ = 4πGρ. (Bottom middle) A minimal surface (catenoid), which has zero
mean curvature and is governed by a nonlinear elliptic equation. (Bottom right) Comparison of
solutions with di�erent boundary conditions (Dirichlet, Neumann, mixed) for the same operator.
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Electrostatics. The electrostatic potential Φ in a region free of charges satis�es Laplace's
equation ∆Φ = 0. In the presence of a charge distribution ρ, the potential satis�es the Poisson
equation −∆Φ = ρ/ϵ0.

Steady-state heat conduction. The temperature distribution T in a body in thermal
equilibrium satis�es ∆T = 0 in regions without heat sources. With a heat source of density f ,
we have −∆T = f/k, where k is the thermal conductivity.

Membrane de�ection. The vertical de�ection u of an elastic membrane under a transverse
load f is governed by −∆u = f/τ , where τ is the tension.

Minimal surfaces. A surface that minimizes area subject to boundary constraints has zero
mean curvature and is described by a nonlinear elliptic equation.

7 Conclusion

This chapter has provided an overview of the classical theory of second-order linear elliptic
equations. We have seen that harmonic functions possess remarkable properties, such as the
mean value property and the maximum principle, which have profound consequences for the
uniqueness and stability of solutions. We developed the method of Green's functions, which
provides an explicit integral representation of the solution, and Perron's method, which gives a
general existence proof for the Dirichlet problem. Finally, we discussed the fundamental concept
of elliptic regularity, which ensures that solutions to elliptic equations are as smooth as the
data allows. This classical theory provides the foundation and intuition for the more abstract,
functional-analytic approach to elliptic PDEs that was developed in the previous chapter, and
prepares us for the study of parabolic and hyperbolic equations in the chapters to come.
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Chapter 3

Parabolic Equations: The Heat Equation and

Evolution Problems

1 Introduction to Parabolic Equations and the Heat Equation

We now transition from the study of steady-state phenomena, described by elliptic equations, to
the analysis of time-dependent evolution processes. The archetypal model for such processes is
the heat equation, which governs the di�usion of heat in a medium over time. This equation
serves as the prototype for a broad class of partial di�erential equations known as parabolic
equations.

Parabolic PDEs are fundamentally di�erent from their elliptic counterparts. They describe
problems that are second-order in space but only �rst-order in time. This temporal asymmetry
introduces an irreversible �arrow of time� into the mathematics. Unlike elliptic equations, which
smooth solutions globally, parabolic equations exhibit an in�nite speed of propagation for distur-
bances, meaning a change at any point in the initial data is felt instantly, albeit in�nitesimally,
everywhere in the domain. However, they also possess a strong regularising e�ect, smoothing
out initial data as time progresses.

A general second-order linear parabolic operator L in a domain Ω ⊂ Rn and for time t > 0
is given by:

Lu = ut −
n∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x, t)
∂u

∂xi
+ c(x, t)u (3.1)

The operator is parabolic if the spatial part is elliptic, i.e., the matrix A(x, t) = (aij(x, t)) is
positive de�nite for all (x, t). The quintessential parabolic equation is the heat equation, where
A is the identity matrix and the lower-order terms are zero:

ut −∆u = 0 (3.2)

This chapter will develop the classical theory for parabolic equations, focusing primarily on
the heat equation. We will derive the equation from physical principles, introduce the concept of
the initial/boundary value problem, and explore the fundamental solution. We will then prove
a maximum principle for the heat equation, which, like its elliptic counterpart, is a cornerstone
of the theory and provides uniqueness for solutions. Finally, we will discuss the regularity of
solutions, highlighting the smoothing property of the heat operator.

1.1 Derivation of the Heat Equation

The heat equation can be derived from two fundamental physical principles: the conservation
of energy and Fourier's law of heat conduction.

Consider a region V ⊂ Rn. The total amount of heat energy contained in this region at time
t is given by the integral of the energy density:

28
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E(t) =

∫
V
cρu(x, t) dx (3.3)

where u(x, t) is the temperature at point x and time t, c is the speci�c heat capacity of the
material, and ρ is its density. The rate of change of this energy must be equal to the heat �owing
across the boundary ∂V plus the heat generated by any sources inside V .

The conservation of energy principle states:

dE

dt
= −

∫
∂V

q · n dS +

∫
V
f(x, t) dx (3.4)

where q is the heat �ux vector (energy per unit area per unit time), n is the outward unit
normal to the boundary ∂V , and f(x, t) is the rate of heat production per unit volume from
internal sources.

By the Divergence Theorem, the boundary integral can be converted to a volume integral:∫
∂V

q · n dS =

∫
V
div(q) dx (3.5)

Substituting this and the expression for E(t) into the energy balance equation, we get:∫
V
cρut(x, t) dx = −

∫
V
div(q) dx+

∫
V
f(x, t) dx (3.6)

Since this must hold for any arbitrary volume V , the integrands must be equal:

cρut = −div(q) + f (3.7)

Now, we need a constitutive relation that connects the heat �ux q to the temperature u. This
is provided by Fourier's law of heat conduction, which states that heat �ows from hotter
regions to colder regions, and the rate of �ow is proportional to the temperature gradient:

q = −k∇u (3.8)

where k > 0 is the thermal conductivity of the material.
Substituting Fourier's law into the conservation equation, we obtain:

cρut = −div(−k∇u) + f = div(k∇u) + f (3.9)

If the material is homogeneous, then k is constant, and we can write:

cρut = k∆u+ f (3.10)

Rearranging this gives the inhomogeneous heat equation:

ut −D∆u =
f

cρ
(3.11)

where D = k/(cρ) is the thermal di�usivity. In the absence of sources (f = 0) and setting
D = 1 by scaling time or space, we arrive at the classical heat equation:

ut −∆u = 0 (3.12)

This derivation highlights that the heat equation is a mathematical formulation of the fun-
damental principles of energy conservation and heat �ow.
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2 The Initial/Boundary Value Problem

Unlike elliptic problems, which are typically posed as pure boundary value problems, parabolic
equations describe evolution in time and thus require initial conditions to be speci�ed. A well-
posed problem for the heat equation typically involves specifying the initial temperature dis-
tribution throughout the domain and the temperature or heat �ux on the boundary for all
subsequent times.

Let Ω ⊂ Rn be a bounded domain and let T > 0 be a �nal time. We de�ne the space-time
cylinder UT = Ω× (0, T ] and its parabolic boundary ΓT = (Ω× {0}) ∪ (∂Ω× [0, T ]).

The initial/boundary value problem for the heat equation is to �nd a function u(x, t) such
that: 

ut −∆u = f in UT

u = g on ∂Ω× (0, T ] (Dirichlet boundary condition)

u(x, 0) = u0(x) for x ∈ Ω (Initial condition)

(3.13)

Here, f is a source term, g is the prescribed boundary temperature, and u0 is the initial
temperature distribution. One could also prescribe Neumann boundary conditions (specifying
the heat �ux ∂u

∂ν on the boundary) or Robin boundary conditions.

Figure 1: Heat Equation and Fundamental Solution. This comprehensive �gure illustrates
the fundamental properties of the heat equation and its solution. (Top left) Evolution of the
heat kernel in 1D, showing how the Gaussian spreads and �attens over time. (Top middle)

The heat kernel in 2D at a �xed time, displaying the characteristic Gaussian pro�le centred at
the origin. (Top right) The smoothing e�ect of the heat equation: a discontinuous step initial
condition becomes smooth for any t > 0. (Bottom left) Radial heat di�usion from a point
source in 2D, showing how the peak decreases and the spread increases over time. (Bottom

middle) Conservation of total heat: the integral of the heat kernel remains constant at 1 for
all times, re�ecting energy conservation. (Bottom right) Comparison of elliptic and parabolic
fundamental solutions, showing di�erent decay rates.
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3 The Fundamental Solution

As with the Laplacian, we can �nd a fundamental solution for the heat operator L = ∂t − ∆.
This is a solution to the equation Lu = δ(0,0), representing the temperature evolution from a
point source of heat released at the origin at time t = 0. The fundamental solution, denoted
Φ(x, t), is given by:

Φ(x, t) =

 1
(4πt)n/2 e

− |x|2
4t for t > 0

0 for t ≤ 0
(3.14)

This function is also known as the heat kernel. It has several important properties:

1. For each �xed t > 0, the function x 7→ Φ(x, t) is a Gaussian function. As t → 0+, the
Gaussian becomes increasingly peaked at the origin, approximating a Dirac delta function.

2. For any t > 0,
∫
Rn Φ(x, t) dx = 1. This re�ects the conservation of energy: the total

amount of heat from the initial point source remains constant over time.

3. For any x ̸= 0 and t > 0, Φt −∆Φ = 0. The fundamental solution is a classical solution
of the heat equation away from the origin.

Using the fundamental solution, we can write down an explicit solution to the initial value
problem for the heat equation on the whole space Rn (the Cauchy problem):{

ut −∆u = 0 in Rn × (0,∞)

u(x, 0) = u0(x) for x ∈ Rn
(3.15)

The solution is given by the convolution of the initial data with the heat kernel:

u(x, t) =

∫
Rn

Φ(x− y, t)u0(y) dy =
1

(4πt)n/2

∫
Rn

e−
|x−y|2

4t u0(y) dy (3.16)

This formula shows that the temperature at a point (x, t) is a weighted average of the
initial temperatures, with the weights given by the Gaussian kernel. The in�uence of the initial
temperature at a point y on the temperature at x decays exponentially with the square of the
distance |x−y|2. However, for any t > 0, the value of u(x, t) depends on the initial data over the
entire space Rn. This is the mathematical manifestation of the in�nite speed of propagation

of heat.

4 The Maximum Principle for the Heat Equation

Just as for elliptic equations, the maximum principle is a fundamental tool in the study of
parabolic equations. It states that the maximum temperature in a region of space-time must
occur either at the initial time or on the spatial boundary.

Let UT = Ω × (0, T ] be the space-time cylinder, and let its parabolic boundary be ΓT =
(Ω× {0}) ∪ (∂Ω× [0, T ]).

Theorem 4.1 (Weak Maximum Principle for the Heat Equation). Let u ∈ C2,1(UT ) ∩ C(UT )
be a solution to the heat equation ut −∆u = 0 in UT . Then the maximum value of u is attained
on the parabolic boundary ΓT :

max
UT

u = max
ΓT

u (3.17)
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Proof Sketch. The proof is slightly more subtle than for the elliptic case because we cannot sim-
ply assume the maximum occurs at an interior point and use the equation to get a contradiction.
If u has a maximum at an interior point (x0, t0), we would have ∇u(x0, t0) = 0, ut(x0, t0) = 0,
and the Hessian matrix of the spatial derivatives D2u(x0, t0) would be negative semi-de�nite,
implying ∆u(x0, t0) ≤ 0. Then the heat equation gives ut −∆u = 0− (≤ 0) ≥ 0. This does not
give a contradiction.

To circumvent this, we use a trick. Consider the auxiliary function v(x, t) = u(x, t)− ϵt for
some small ϵ > 0. Then vt −∆v = (ut − ϵ)−∆u = (ut −∆u)− ϵ = −ϵ < 0. Now, if v were to
have a maximum at an interior point (x0, t0), we would have vt(x0, t0) = 0 and ∆v(x0, t0) ≤ 0.
This would imply vt −∆v ≥ 0 at that point, which contradicts vt −∆v = −ϵ < 0. Therefore, v
must attain its maximum on the parabolic boundary ΓT .

Now, we have:

max
UT

u = max
UT

(v + ϵt) ≤ max
UT

v + ϵT = max
ΓT

v + ϵT ≤ max
ΓT

u+ ϵT (3.18)

Taking the limit as ϵ → 0, we get maxUT
u ≤ maxΓT

u. Since the other inequality is trivial, the
result follows.

Similar to the elliptic case, there is also a strong maximum principle for the heat equation,
which states that if a solution attains its maximum at an interior point of the space-time cylinder,
it must be constant.

The maximum principle has the same important consequence of ensuring uniqueness for the
initial/boundary value problem for the heat equation.

Corollary 4.2 (Uniqueness for the Initial/Boundary Value Problem). The initial/boundary
value problem for the heat equation has at most one solution.
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Figure 2: Maximum Principle for the Heat Equation. This �gure demonstrates the
maximum principle and its consequences for parabolic equations. (Top left) A solution to the
heat equation on the interval [0, 1], showing the space-time evolution. (Top middle) Cross-
sections at di�erent times, clearly showing that the maximum decays over time and occurs at
the initial time t = 0. (Top right) Illustration of the parabolic boundary ΓT , consisting of the
initial boundary (bottom) and the spatial boundary (sides). (Bottom left) Comparison with
the elliptic maximum principle, showing the di�erent boundary concepts. (Bottom middle)

Uniqueness of the solution via the maximum principle: if two solutions exist, their di�erence
must be zero. (Bottom right) The strong maximum principle: if the maximum is attained at
an interior point, the solution must be constant.

5 Regularity of Solutions

The solution formula involving the heat kernel shows that even if the initial data u0 is discon-
tinuous, the solution u(x, t) is in�nitely di�erentiable with respect to both space and time for
any t > 0. This is a manifestation of the smoothing property of the heat equation.

Theorem 5.1 (Regularity of Solutions to the Heat Equation). Let u0 ∈ L1(Rn) be the initial
data. The solution u(x, t) to the Cauchy problem for the heat equation is in C∞(Rn × (0,∞)).

Proof Sketch. The solution is given by the convolution u(x, t) = (Φ( · , t) ∗ u0)(x). Since the
heat kernel Φ(x, t) is a C∞ function for t > 0, we can di�erentiate under the integral sign with
respect to x and t as many times as we like. The derivatives of the Gaussian kernel are still
well-behaved functions that decay rapidly, ensuring that the integrals converge. This shows that
u(x, t) is in�nitely di�erentiable for t > 0.

This smoothing property is a hallmark of parabolic equations and stands in sharp contrast
to hyperbolic equations (like the wave equation), which can propagate singularities from the
initial data.
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Figure 3: Smoothing Property and Regularity. This �gure illustrates the remarkable
smoothing e�ect of the heat equation. (Top left) Instantaneous smoothing: a discontinuous
initial condition becomes in�nitely di�erentiable for any t > 0. (Top middle) Evolution from
a delta function initial data to a smooth Gaussian. (Top right) All derivatives of the solution
exist and are continuous for t > 0. (Bottom left) Comparison with the wave equation: the
heat equation smooths while the wave equation propagates discontinuities. (Bottom middle)

In�nite speed of propagation: localized initial data has global in�uence for any t > 0. (Bottom
right) The parabolic regularity hierarchy: the smoothness of the solution improves dramatically
for t > 0, regardless of the regularity of the initial data.

6 Separation of Variables and Eigenfunction Expansion

For the heat equation on a bounded domain with homogeneous boundary conditions, the method
of separation of variables provides an explicit solution in the form of an eigenfunction expansion.
This method reveals the spectral structure of the heat operator and shows how di�erent spatial
modes decay at di�erent rates.

Consider the heat equation on the interval (0, 1) with Dirichlet boundary conditions:
ut − uxx = 0 for x ∈ (0, 1), t > 0

u(0, t) = u(1, t) = 0 for t > 0

u(x, 0) = u0(x) for x ∈ (0, 1)

(3.19)

We seek solutions of the form u(x, t) = X(x)T (t). Substituting into the heat equation and
separating variables gives:

T ′(t)

T (t)
=

X ′′(x)

X(x)
= −λ (3.20)

where λ is a separation constant. The spatial part gives the eigenvalue problem:
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{
−X ′′ = λX for x ∈ (0, 1)

X(0) = X(1) = 0
(3.21)

The eigenfunctions and eigenvalues are:

Xn(x) = sin(nπx), λn = (nπ)2, n = 1, 2, 3, . . . (3.22)

The temporal part gives:

Tn(t) = e−λnt = e−(nπ)2t (3.23)

The general solution is a superposition of these modes:

u(x, t) =
∞∑
n=1

cn sin(nπx)e
−(nπ)2t (3.24)

where the coe�cients cn are determined by the initial condition:

cn = 2

∫ 1

0
u0(x) sin(nπx) dx (3.25)

This expansion shows that higher spatial frequencies (larger n) decay exponentially faster,
as they have larger eigenvalues. This is the mathematical reason for the smoothing property of
the heat equation.
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Figure 4: Separation of Variables and Eigenfunction Expansion. This �gure illustrates
the spectral decomposition of solutions to the heat equation. (Top left) The �rst �ve eigen-
functions of the Laplacian on [0, 1] with Dirichlet boundary conditions. (Top middle) The
eigenvalues grow quadratically with the mode number n. (Top right) Exponential decay of
di�erent modes over time, with higher modes decaying faster. (Bottom left) A solution ob-
tained by separation of variables, showing the space-time evolution of a single mode. (Bottom
middle) Superposition of multiple modes to construct a general solution. (Bottom right) De-
cay of Fourier coe�cients over time, demonstrating how high-frequency components are rapidly
eliminated.

7 Energy Methods and Semigroup Theory

An alternative approach to studying the heat equation is through energy methods and the theory
of semigroups. The energy of a solution is de�ned as:

E(t) =
1

2

∫
Ω
u2(x, t) dx =

1

2
∥u(·, t)∥2L2(Ω) (3.26)

For solutions to the heat equation with homogeneous Dirichlet boundary conditions, the
energy decays monotonically in time. Di�erentiating with respect to time and using the heat
equation:

dE

dt
=

∫
Ω
uut dx =

∫
Ω
u∆u dx = −

∫
Ω
|∇u|2 dx ≤ 0 (3.27)

where we have used integration by parts and the boundary conditions. This shows that
energy is dissipated, and the rate of dissipation is given by the L2 norm of the gradient.

The heat equation can also be viewed as an evolution equation in an abstract Hilbert space.
De�ne the heat semigroup S(t) : L2(Ω) → L2(Ω) by S(t)u0 = u(·, t), where u is the solution to
the heat equation with initial data u0. This semigroup has the properties:

1. S(0) = I (identity)
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2. S(t+ s) = S(t) ◦ S(s) (semigroup property)

3. ∥S(t)u0∥L2 ≤ ∥u0∥L2 (contraction property)

The in�nitesimal generator of the semigroup is the Laplacian operator A = ∆ with appro-
priate boundary conditions.

Figure 5: Energy Methods and Semigroup Theory. This �gure illustrates the energy
decay and semigroup structure of the heat equation. (Top left) Exponential decay of energy
over time for a solution to the heat equation. (Top middle) Comparison of energy decay rates
for di�erent modes, showing that higher modes lose energy faster. (Top right) Illustration of
the semigroup property: S(t+ s) = S(t) ◦ S(s). (Bottom left) The contraction property: the
norm of the solution decreases over time. (Bottom middle) The in�nitesimal generator A = ∆
and its action on eigenfunctions. (Bottom right) E�ect of di�erent di�usion coe�cients on
the decay rate.

8 Applications of the Heat Equation

The heat equation and its generalizations arise in numerous physical, biological, and �nancial
contexts. We brie�y survey some of the most important applications.

Heat di�usion. The most direct application is to the conduction of heat in solids, liquids,
and gases. The temperature distribution in a conducting medium evolves according to the heat
equation.

Di�usion processes. The heat equation also describes the di�usion of particles, chemicals,
or populations. In this context, u(x, t) represents concentration rather than temperature.

Reaction-di�usion equations. Adding a nonlinear reaction term to the heat equation
gives reaction-di�usion equations of the form ut = D∆u+f(u). These equations model chemical
reactions, population dynamics, and pattern formation in biology.

Black-Scholes equation. In mathematical �nance, the Black-Scholes equation for option
pricing is a parabolic PDE that can be transformed into the heat equation. It describes the
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evolution of the price of a �nancial derivative.
Image processing. The heat equation is used in image processing for smoothing and

denoising. Applying the heat equation to an image blurs it in a controlled way, removing high-
frequency noise.

Figure 6: Applications of the Heat Equation. This �gure illustrates various physical and
mathematical applications of parabolic equations. (Top left) Heat di�usion in a rod with
insulated ends, showing the decay of an initial temperature distribution. (Top middle) A
traveling wave solution to the Fisher-KPP reaction-di�usion equation, modelling population
spread. (Top right) The Black-Scholes equation for option pricing, showing how the value of
a call option evolves as a function of stock price and time. (Bottom left) 2D di�usion from a
point source, with concentration contours. (Bottom middle) Cooling of a heated plate with a
step initial temperature distribution. (Bottom right) Comparison of solutions with di�erent
boundary conditions (Dirichlet, Neumann, mixed).

9 Conclusion

This chapter has introduced the fundamental concepts of parabolic partial di�erential equations,
using the heat equation as the primary example. We have seen how the equation arises from
physical principles, and we have explored the well-posedness of the initial/boundary value prob-
lem. The fundamental solution, or heat kernel, provides an explicit solution formula for the
Cauchy problem and reveals the in�nite speed of propagation and the smoothing property of
the heat equation. The maximum principle, a powerful tool for parabolic equations, guarantees
the uniqueness of solutions. The method of separation of variables and eigenfunction expansion
provides explicit solutions for bounded domains and reveals the spectral structure of the heat
operator. Energy methods and semigroup theory o�er an abstract framework for understanding
the long-time behaviour of solutions. The theory developed here for the heat equation lays the
groundwork for the study of more general parabolic equations and provides a crucial point of
comparison for the hyperbolic equations to be studied in the next chapter.
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Chapter 4

Hyperbolic Equations: The Wave Equation and

Propagation Phenomena

1 Introduction to Hyperbolic Equations and the Wave Equation

We now turn our attention to the third and �nal main class of second-order linear partial
di�erential equations: hyperbolic equations. These equations model phenomena involving
wave propagation, such as the vibrations of a string, the propagation of sound waves, or the
dynamics of electromagnetic �elds. The prototypical example of a hyperbolic equation is the
wave equation.

Hyperbolic equations are fundamentally di�erent from both elliptic and parabolic equations.
They are second-order in both space and time, which gives rise to their characteristic wave-
like behaviour. Unlike parabolic equations, which exhibit in�nite speed of propagation and
a strong smoothing e�ect, hyperbolic equations have a �nite speed of propagation. This
means that disturbances travel at a �nite speed, and a change in the initial data at a point
only a�ects a speci�c region of space-time, known as the domain of in�uence. Furthermore,
hyperbolic equations do not smooth out singularities; instead, they propagate singularities
along characteristic curves. This is why we can hear sharp sounds and see sharp images, as the
waves that carry them do not get instantly blurred out.

A general second-order linear hyperbolic operator L is given by:

Lu = utt −
n∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
+ lower-order terms (4.1)

The operator is hyperbolic if the spatial part is elliptic, i.e., the matrix A(x, t) = (aij(x, t)) is
positive de�nite. The simplest hyperbolic equation is the wave equation, where A is the identity
matrix and the lower-order terms are zero:

utt − c2∆u = 0 (4.2)

where c is the wave speed.
This chapter will develop the classical theory for hyperbolic equations, focusing on the wave

equation. We will derive the equation for a vibrating string, and then we will �nd the general
solution in one dimension using d'Alembert's formula. This formula will make the concepts of
domain of in�uence and �nite speed of propagation precise. We will then discuss the conservation
of energy for the wave equation. Finally, we will explore the solution in higher dimensions using
Kirchho�'s formula and discuss Huygens' principle.

1.1 Derivation of the 1D Wave Equation

The one-dimensional wave equation can be derived by considering the transverse vibrations of
a �exible, elastic string. We make the following simplifying assumptions:

40
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1. The string is perfectly �exible and o�ers no resistance to bending.

2. The tension in the string is uniform and much larger than the force of gravity, so we can
neglect gravity.

3. The vibrations are small and transverse, meaning each point on the string only moves
vertically.

Let u(x, t) be the vertical displacement of the string at position x and time t. Consider a
small segment of the string between x and x + ∆x. The forces acting on this segment are the
tension forces at its ends. Let T be the magnitude of the tension. The tension vectors at the
ends are tangent to the string.

The vertical component of the tension force at x + ∆x is T sin θ(x + ∆x), and at x it is
−T sin θ(x), where θ is the angle the string makes with the horizontal. For small vibrations,
sin θ ≈ tan θ = ux. So the net vertical force is:

Fv ≈ Tux(x+∆x, t)− Tux(x, t) (4.3)

By Newton's second law, this force must be equal to the mass of the segment times its
acceleration. Let ρ be the linear density (mass per unit length) of the string. The mass of the
segment is ρ∆x. The acceleration is utt. So we have:

ρ∆xutt(x, t) ≈ Tux(x+∆x, t)− Tux(x, t) (4.4)

Dividing by ∆x and taking the limit as ∆x → 0, we get:

ρutt = Tuxx (4.5)

Rearranging this gives the one-dimensional wave equation:

utt − c2uxx = 0, where c =

√
T

ρ
(4.6)

This derivation shows that the wave speed c is determined by the physical properties of the
string: the tension and the density.

2 d'Alembert's Formula

For the one-dimensional wave equation, we can �nd a surprisingly simple and elegant general
solution. This is known as d'Alembert's formula. Consider the wave equation:

utt − c2uxx = 0 (4.7)

We can factor the wave operator as:

(∂t − c∂x)(∂t + c∂x)u = 0 (4.8)

Let v = ut + cux. Then the equation becomes vt − cvx = 0. This is a �rst-order transport
equation, and its general solution is v(x, t) = h(x + ct) for some function h. Now we have to
solve:

ut + cux = h(x+ ct) (4.9)

This is another �rst-order linear PDE. The general solution to the homogeneous part is
f(x− ct). A particular solution can be found by integrating h. The general solution to the wave
equation is the sum of these, which can be written as:
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u(x, t) = F (x− ct) +G(x+ ct) (4.10)

for arbitrary functions F and G. This is the general solution of the 1D wave equation.
It shows that any solution can be written as the sum of a right-traveling wave F (x− ct) and a
left-traveling wave G(x+ ct), both moving at speed c.

Now, consider the initial value problem (Cauchy problem) for the wave equation on the whole
line: 

utt − c2uxx = 0 for x ∈ R, t > 0

u(x, 0) = g(x) for x ∈ R
ut(x, 0) = h(x) for x ∈ R

(4.11)

We need to �nd the speci�c functions F and G that satisfy these initial conditions. Plugging
in t = 0 into the general solution and its time derivative, we get:

u(x, 0) = F (x) +G(x) = g(x) (4.12)

ut(x, 0) = −cF ′(x) + cG′(x) = h(x) (4.13)

Integrating the second equation gives −F (x)+G(x) = 1
c

∫ x
0 h(s) ds+C. Solving this system

for F and G, we �nd:

F (x) =
1

2
g(x)− 1

2c

∫ x

0
h(s) ds− C

2
(4.14)

G(x) =
1

2
g(x) +

1

2c

∫ x

0
h(s) ds+

C

2
(4.15)

Substituting these back into the general solution u(x, t) = F (x− ct) +G(x+ ct), we obtain
d'Alembert's formula:

u(x, t) =
1

2
[g(x− ct) + g(x+ ct)] +

1

2c

∫ x+ct

x−ct
h(s) ds (4.16)

This remarkable formula gives the solution at any point (x, t) in terms of the initial position
g and initial velocity h.
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Figure 1: d'Alembert's Formula and Traveling Waves. This comprehensive �gure illus-
trates the fundamental properties of the wave equation and d'Alembert's solution. (Top left)

A right-traveling wave F (x− ct) moving to the right at speed c. (Top middle) Superposition
of left and right traveling waves, demonstrating d'Alembert's general solution. (Top right)

Space-time evolution of a wave showing the characteristic propagation pattern. (Bottom left)

Domain of dependence: the solution at a point (x, t) depends only on the initial data in the
interval [x − ct, x + ct]. (Bottom middle) Domain of in�uence: the forward light cone show-
ing the region a�ected by initial data at a point. (Bottom right) Comparison with the heat
equation, showing sharp propagation versus di�usive smoothing.

3 Domain of In�uence and Finite Speed of Propagation

d'Alembert's formula clearly shows the concept of �nite speed of propagation. The value of the
solution u(x, t) at a point (x, t) depends only on the initial data on the interval [x− ct, x+ ct].
This interval is called the domain of dependence of the point (x, t).

Conversely, a point x0 on the initial line t = 0 can only in�uence the solution in the region
|x − x0| ≤ ct. This region is called the domain of in�uence of the point x0. It is a cone in
space-time, with its vertex at (x0, 0) and its sides having slopes ±1/c. This is known as the
light cone.

This is in stark contrast to the heat equation, where the solution at any point (x, t) with t > 0
depends on the initial data everywhere. The wave equation has a �nite speed of propagation,
while the heat equation has an in�nite speed of propagation.

4 Conservation of Energy

For the wave equation, there is a conserved quantity that can be interpreted as the energy of the
wave. The energy is de�ned as the sum of the kinetic energy (from the velocity of the string)
and the potential energy (from the stretching of the string).

The kinetic energy is given by:
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K.E. =
1

2

∫
ρu2t dx (4.17)

The potential energy is the work done in stretching the string. The length of a small segment
of the string is ds =

√
1 + u2x dx ≈ (1 + 1

2u
2
x) dx. The work done against the tension T is

T (ds− dx) = 1
2Tu

2
x dx. So the total potential energy is:

P.E. =
1

2

∫
Tu2x dx (4.18)

The total energy is:

E(t) =
1

2

∫
(ρu2t + Tu2x) dx (4.19)

Let's see if this energy is conserved. Di�erentiating with respect to time:

dE

dt
=

∫
(ρututt + Tuxuxt) dx (4.20)

Using the wave equation utt = c2uxx = (T/ρ)uxx, we have ρutt = Tuxx. Substituting this
into the integral:

dE

dt
=

∫
(Tuxxut + Tuxuxt) dx = T

∫
(uxxut + uxuxt) dx = T

∫
∂

∂x
(uxut) dx (4.21)

By the Fundamental Theorem of Calculus, this integral is equal to [Tuxut] evaluated at the
boundaries. If we are on the whole real line and the solution has compact support, or if we have
�xed (Dirichlet) or free (Neumann) boundary conditions, this boundary term is zero. Therefore:

dE

dt
= 0 (4.22)

This shows that the energy of the wave is conserved over time. This is a fundamental property
of hyperbolic systems and is related to the time-reversibility of the wave equation. If we reverse
time (t → −t), the wave equation is unchanged, and the energy is still conserved.
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Figure 2: Conservation of Energy for the Wave Equation. This �gure demonstrates
the energy conservation property of the wave equation. (Top left) Periodic exchange between
kinetic and potential energy for a standing wave, with total energy remaining constant. (Top
middle) Spatial distribution of energy density at di�erent times. (Top right) Phase space
trajectory showing periodic motion and conservation. (Bottom left) Energy density and energy
�ux for a traveling wave. (Bottom middle) Time reversibility: the wave equation is symmetric
under time reversal. (Bottom right) Comparison with the heat equation: wave energy is
conserved while heat energy decays.

5 Separation of Variables for the Wave Equation

Similar to the heat equation, we can use the method of separation of variables to solve the wave
equation on a bounded domain with homogeneous boundary conditions. This method leads to
standing wave solutions.

Consider the wave equation on a rectangular domain Ω = (0, a) × (0, b) with Dirichlet
boundary conditions: 

utt − c2(uxx + uyy) = 0 in Ω× (0,∞)

u = 0 on ∂Ω× (0,∞)

u(x, y, 0) = g(x, y) in Ω

ut(x, y, 0) = h(x, y) in Ω

(4.23)

We look for solutions of the form u(x, y, t) = X(x)Y (y)T (t). Substituting into the wave
equation and separating variables, we get:

T ′′(t)

c2T (t)
=

X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
= −λ (4.24)

This leads to three separate eigenvalue problems. The spatial part gives:
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−X ′′ = µX, −Y ′′ = νY, µ+ ν = λ (4.25)

The solutions with the given boundary conditions are:

Xmn(x) = sin(
mπx

a
) (4.26)

Ymn(y) = sin(
nπy

b
) (4.27)

with eigenvalues µm = (mπ/a)2 and νn = (nπ/b)2. The spatial eigenfunctions are ϕmn(x, y) =
sin(mπx

a ) sin(nπyb ), and the eigenvalues are λmn = π2(m2/a2 + n2/b2).
The temporal part is T ′′ + c2λmnT = 0, which has solutions:

Tmn(t) = Amn cos(ωmnt) +Bmn sin(ωmnt) (4.28)

where ωmn = c
√
λmn are the characteristic frequencies.

The general solution is a superposition of these standing waves:

u(x, y, t) =
∞∑

m=1

∞∑
n=1

[Amn cos(ωmnt) +Bmn sin(ωmnt)] sin(
mπx

a
) sin(

nπy

b
) (4.29)

The coe�cients Amn and Bmn are determined by the initial conditions.

Figure 3: Standing Waves and Separation of Variables. This �gure illustrates the method
of separation of variables for the wave equation. (Top left) The �rst �ve spatial modes (eigen-
functions) of the wave operator. (Top middle) Temporal oscillations of di�erent modes at their
characteristic frequencies. (Top right) Space-time evolution of a standing wave showing the
fundamental mode. (Bottom left) Snapshots of a standing wave at di�erent times, showing the
oscillation pattern. (Bottom middle) Superposition of multiple standing waves to construct
a general solution. (Bottom right) Characteristic frequencies (harmonics) showing the linear
relationship with mode number.
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6 The Wave Equation in Higher Dimensions

In three spatial dimensions, the wave equation is:

utt − c2∆u = 0, where ∆u = uxx + uyy + uzz (4.30)

The solution to the initial value problem in R3 is given by Kirchho�'s formula. It is more
complicated than d'Alembert's formula. If the initial data is u(x, 0) = g(x) and ut(x, 0) = h(x),
the solution is:

u(x, t) =
1

4πc2t2

∫
∂B(x,ct)

[th(y) + g(y) +∇g(y) · (y − x)] dS(y) (4.31)

This formula has a remarkable consequence known as Huygens' principle. The solution
at a point (x, t) depends only on the initial data on the surface of the sphere of radius ct centred
at x. It does not depend on the data inside the sphere. This means that a sharp pulse of initial
data will result in a sharp pulse in the solution. There is no lingering e�ect, or �coda�. This is
why we hear clean sounds in three dimensions.

In two spatial dimensions, the solution is given by a similar formula, but the integral is over
the entire ball B(x, ct), not just its boundary. This means that the solution at (x, t) depends
on the initial data inside the sphere of in�uence. This leads to a lingering e�ect, and Huygens'
principle in its sharp form does not hold in 2D. This is why a pebble dropped in a pond creates
ripples that continue for some time.
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Figure 4: Huygens' Principle and Wave Propagation in Higher Dimensions. This �gure
illustrates Huygens' principle and the dimensional dependence of wave propagation. (Top left)

Huygens' principle in 3D: sharp wavefronts propagate outward from a source. (Top middle)

Wave propagation in 2D showing a trailing e�ect behind the wavefront. (Top right) Wave
propagation in 3D showing a sharp wavefront without trailing. (Bottom left) The domain of
dependence in 3D visualized as a light cone. (Bottom middle) Comparison of 1D, 2D, and 3D
wave propagation at a �xed time. (Bottom right) Kirchho�'s formula: integration over the
surface of a sphere.

7 Characteristics and the Method of Characteristics

The concept of characteristics is central to the theory of hyperbolic equations. For the wave
equation, the characteristics are the curves along which information propagates. They are the
solutions to the ordinary di�erential equations:

dx

dt
= ±c (4.32)

These give the two families of characteristics: x = x0+ ct (right-going) and x = x0− ct (left-
going). The general solution u(x, t) = F (x− ct) +G(x+ ct) shows that the solution is constant
along each characteristic. The value of F is constant along the right-going characteristics, and
the value of G is constant along the left-going characteristics.

The method of characteristics can be used to solve more general �rst-order PDEs and sys-
tems of �rst-order PDEs. For hyperbolic systems, the characteristics determine the domain of
dependence and the domain of in�uence.
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Figure 5: Characteristics and the Method of Characteristics. This �gure illustrates
the concept of characteristics for hyperbolic equations. (Top left) Characteristic curves for the
wave equation: two families of lines with slopes ±1/c. (Top middle) Propagation of initial data
along characteristics according to d'Alembert's solution. (Top right) The characteristic cone
showing past and future light cones. (Bottom left) First-order transport equation showing
propagation along a single family of characteristics. (Bottom middle) Factorization of the
wave operator into two �rst-order operators. (Bottom right) Comparison of characteristics for
elliptic, parabolic, and hyperbolic equations.

8 Applications of the Wave Equation

The wave equation and its generalizations arise in numerous physical contexts. We brie�y survey
some of the most important applications.

Vibrating strings and membranes. The most direct application is to the vibrations of
strings (1D) and membranes (2D), such as musical instruments.

Acoustic waves. Sound waves in air, water, or other media are governed by the wave
equation. The pressure or velocity perturbations satisfy the wave equation.

Electromagnetic waves. In vacuum, the electric and magnetic �elds satisfy the wave
equation. This is the basis of Maxwell's theory of electromagnetism and explains the propagation
of light, radio waves, and other electromagnetic radiation.

Seismic waves. Earthquakes generate seismic waves that propagate through the Earth.
There are two main types: P-waves (compression waves) and S-waves (shear waves), both gov-
erned by wave equations.

Water waves. Surface waves on water are approximately governed by wave equations,
though the full theory involves nonlinear and dispersive e�ects.



Chapter 4: Hyperbolic Equations: The Wave Equation and Propagation Phenomena 50

Figure 6: Applications of the Wave Equation. This �gure illustrates various physical
applications of hyperbolic equations. (Top left) Vibrating string showing the fundamental
mode of oscillation. (Top middle) Acoustic wave propagation showing sound pulses traveling at
the speed of sound. (Top right) Electromagnetic wave showing the electric and magnetic �elds
oscillating in phase. (Bottom left) Seismic waves: P-waves (compression) and S-waves (shear)
propagating at di�erent speeds. (Bottom middle) Vibrating membrane (drumhead) showing
a 2D standing wave pattern. (Bottom right) Water waves showing dispersive propagation.

9 Conclusion

This chapter has provided an introduction to hyperbolic partial di�erential equations, with the
wave equation as the central example. We have seen its derivation, its general solution in one
dimension via d'Alembert's formula, and the crucial concepts of �nite speed of propagation
and domain of in�uence. The conservation of energy for the wave equation was demonstrated,
highlighting its time-reversible nature. We also brie�y explored the solution in higher dimensions
and the signi�cance of Huygens' principle. The method of separation of variables was used to �nd
standing wave solutions on a bounded domain, and the concept of characteristics was introduced.
The theory of hyperbolic equations is fundamental to our understanding of wave phenomena in
physics and engineering, and it provides a stark contrast to the di�usive nature of parabolic
equations and the steady-state character of elliptic equations.
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Chapter 5

Nonlinear Partial Di�erential Equations

1 Introduction to Nonlinear Partial Di�erential Equations

This chapter marks a signi�cant transition from the linear theory developed in the previous
chapters to the vast and complex world of nonlinear partial di�erential equations. While
linear PDEs provide excellent models for many physical phenomena, a deeper understanding of
the natural world requires grappling with nonlinearity. Nonlinearity arises when the principle
of superposition fails, meaning the sum of two solutions is not necessarily a solution. This leads
to a rich variety of new and challenging phenomena, such as the formation of shocks, solitons,
turbulence, and pattern formation.

Nonlinear PDEs are notoriously di�cult to solve. There is no general theory comparable
to the one for linear equations. Instead, a diverse array of methods has been developed, each
tailored to speci�c types of nonlinearities. This chapter will introduce some of the fundamental
techniques used to study nonlinear PDEs, including methods from functional analysis, variational
calculus, and bifurcation theory.

We will classify nonlinear PDEs into three main types:

1. Semilinear equations: The highest-order derivatives are linear, and the nonlinearity
appears only in the lower-order terms. For example, a semilinear elliptic equation has the
form:

−∆u = f(x, u,∇u) (5.1)

2. Quasilinear equations: The coe�cients of the highest-order derivatives depend on the
solution and its lower-order derivatives. For example, a quasilinear elliptic equation has
the form:

−
n∑

i,j=1

aij(x, u,∇u)
∂2u

∂xi∂xj
= f(x, u,∇u) (5.2)

3. Fully nonlinear equations: The equation is nonlinear in its highest-order derivatives.
For example, a fully nonlinear elliptic equation has the form:

F (x, u,∇u,D2u) = 0 (5.3)

where F is nonlinear in the Hessian matrix D2u.

This chapter will focus primarily on semilinear and quasilinear equations, as they are more
amenable to the methods we will develop. We will begin by exploring the use of �xed-point
theorems to establish the existence of solutions. Then, we will introduce the powerful tools of
variational methods and monotone operator theory. Finally, we will touch upon some important
examples of nonlinear PDEs that arise in applications, such as the Navier-Stokes equations of
�uid dynamics and reaction-di�usion equations from mathematical biology.

52
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2 Fixed-Point Methods

One of the most fundamental approaches to solving nonlinear equations is to reformulate them
as a �xed-point problem of the form u = T (u), where T is a suitable operator on a Banach
space. If we can show that T has a �xed point, then we have found a solution to our PDE.

2.1 The Contraction Mapping Principle

The simplest and most powerful �xed-point theorem is the Contraction Mapping Principle,
also known as the Banach Fixed-Point Theorem. It states that if T is a contraction mapping on
a complete metric space, then it has a unique �xed point.

Theorem 2.1 (Contraction Mapping Principle). Let (X, d) be a complete metric space and let
T : X → X be a contraction mapping, i.e., there exists a constant 0 ≤ k < 1 such that for all
x, y ∈ X,

d(T (x), T (y)) ≤ k d(x, y) (5.4)

Then T has a unique �xed point u∗ ∈ X. Furthermore, for any u0 ∈ X, the sequence de�ned by
un+1 = T (un) converges to u∗.

This theorem is very useful for proving the existence and uniqueness of solutions to PDEs,
especially for short times or for small data. The idea is to invert the linear part of the PDE to
de�ne an operator T , and then show that T is a contraction on a suitable function space.

Figure 1: Fixed-Point Methods and Contraction Mappings. This �gure illustrates the
fundamental concepts of �xed-point theory. (Top left) Contraction mapping showing con-
vergence to a unique �xed point through successive iterations. (Top middle) Exponential
convergence rate of the Picard iteration. (Top right) Schauder �xed-point theorem: a compact
operator mapping a convex set to itself has a �xed point. (Bottom left) Non-contraction ex-
ample with multiple �xed points. (Bottom middle) Leray-Schauder degree theory providing
a topological approach to �xed-point problems. (Bottom right) Picard iteration for ODEs
showing successive approximations converging to the exact solution.
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2.2 Schauder Fixed-Point Theorem

For many nonlinear PDEs, the operator T is not a contraction, but it is compact. In this
case, we can use a di�erent class of �xed-point theorems, such as the Schauder Fixed-Point
Theorem.

Theorem 2.2 (Schauder Fixed-Point Theorem). Let X be a Banach space and let C be a
nonempty, closed, convex subset of X. If T : C → C is a compact operator (i.e., it is continuous
and maps bounded sets to precompact sets), then T has a �xed point.

Unlike the Contraction Mapping Principle, the Schauder theorem does not guarantee unique-
ness of the �xed point, nor does it provide a constructive method for �nding it. However, it is
a very powerful tool for proving the existence of solutions to a wide range of nonlinear PDEs,
particularly elliptic equations.

2.3 Leray-Schauder Degree Theory

A more advanced tool is Leray-Schauder degree theory, which is a generalization of the
Brouwer degree of a map to in�nite-dimensional spaces. The Leray-Schauder degree is an integer
associated with a compact operator and a domain, which counts the number of �xed points. If
the degree is non-zero, then there must be at least one �xed point. This theory is particularly
useful for proving the existence of solutions to systems of nonlinear equations and for studying
bifurcation phenomena.

3 Variational Methods

Many nonlinear PDEs can be formulated as the Euler-Lagrange equation of a certain functional.
In this case, solutions to the PDE correspond to critical points of the functional. This allows us
to use the powerful tools of the calculus of variations to prove the existence of solutions.

3.1 The Euler-Lagrange Equation

Consider a functional of the form:

I(u) =

∫
Ω
L(x, u(x),∇u(x)) dx (5.5)

where L is the Lagrangian. A function u is a critical point of I if the �rst variation of I at
u is zero, i.e., for all smooth functions v with compact support in Ω,

d

dϵ
I(u+ ϵv)

∣∣∣
ϵ=0

= 0 (5.6)

Calculating the derivative and integrating by parts, we obtain the Euler-Lagrange equa-
tion:

∂L

∂u
−

n∑
i=1

∂

∂xi

(
∂L

∂uxi

)
= 0 (5.7)

This is a second-order PDE for u. Thus, �nding solutions to this PDE is equivalent to �nding
critical points of the functional I.
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Figure 2: Variational Methods and the Direct Method. This �gure illustrates the calculus
of variations approach to nonlinear PDEs. (Top left) A functional with its minimizer, demon-
strating the direct method. (Top middle) Minimizing sequence converging to the minimizer.
(Top right) Solution to the Euler-Lagrange equation as a critical point. (Bottom left) Con-
vexity property crucial for lower semicontinuity. (Bottom middle) Weak convergence of an
oscillating sequence. (Bottom right) Mountain pass theorem landscape showing saddle points
between two minima.

3.2 The Direct Method of the Calculus of Variations

The direct method of the calculus of variations is a powerful technique for proving the
existence of a minimizer for a functional. The idea is to show that the functional is bounded
below and then to �nd a minimizing sequence. The main di�culty is to show that the minimizing
sequence converges to a limit that is indeed a minimizer.

The key steps are:

1. Show that the functional I is bounded below on a suitable function space X.

2. Let m = infu∈X I(u) and let (un) be a minimizing sequence, i.e., I(un) → m.

3. Show that the minimizing sequence is bounded in X. By the Banach-Alaoglu theorem, we
can extract a weakly convergent subsequence unk

⇀ u in X.

4. Show that the functional I is weakly lower semicontinuous, i.e., lim infk→∞ I(unk
) ≥ I(u).

This is often the most di�cult step and typically requires the Lagrangian L to be convex
in the gradient variable.

5. Conclude that I(u) ≤ m, and since m is the in�mum, we must have I(u) = m. Thus, u is
a minimizer.

This method is very e�ective for proving the existence of solutions to nonlinear elliptic
equations.
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4 Monotone Operator Theory

Another powerful framework for studying nonlinear PDEs is the theory of monotone oper-

ators. This theory was developed in the 1960s by Browder and Minty and provides a general
framework for solving nonlinear equations of the form A(u) = f , where A is a nonlinear operator
from a Banach space to its dual.

De�nition 4.1 (Monotone Operator). Let X be a Banach space and X∗ its dual. An operator
A : X → X∗ is said to be monotone if for all u, v ∈ X,

⟨A(u)−A(v), u− v⟩ ≥ 0 (5.8)

where ⟨·, ·⟩ denotes the duality pairing between X∗ and X.

The main result of monotone operator theory is the Browder-Minty theorem, which gives
conditions for the surjectivity of a monotone operator.

Theorem 4.2 (Browder-Minty Theorem). Let X be a re�exive Banach space and let A : X →
X∗ be a monotone, coercive, and continuous operator. Then A is surjective, i.e., for every
f ∈ X∗, there exists a solution u ∈ X to the equation A(u) = f .

An operator A is coercive if ⟨A(u), u⟩/∥u∥ → ∞ as ∥u∥ → ∞. This theorem is extremely
powerful for proving the existence of weak solutions to a wide class of nonlinear elliptic and
parabolic problems.

Figure 3: Monotone Operator Theory. This �gure illustrates the theory of monotone opera-
tors. (Top left) Example of a monotone operator satisfying the monotonicity condition. (Top
middle) Coercivity property showing growth at in�nity. (Top right) Browder-Minty theo-
rem: conditions for surjectivity of monotone operators. (Bottom left) Galerkin approximation
showing convergence of �nite-dimensional projections. (Bottom middle) Comparison of lin-
ear, monotone nonlinear, and non-monotone operators. (Bottom right) Weak versus classical
solutions, illustrating the generalized framework.
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5 Semilinear Elliptic Equations

Semilinear elliptic equations are among the most studied nonlinear PDEs. A typical example is:{
−∆u = f(x, u) in Ω

u = 0 on ∂Ω
(5.9)

where f is a nonlinear function of u. Depending on the properties of f , various methods
can be applied. If f has sublinear growth, the direct method of the calculus of variations can
be used. If f is monotone, monotone operator theory applies. For more general nonlinearities,
�xed-point methods or topological degree theory may be needed.

An important phenomenon in semilinear equations is bifurcation, where the structure of
the solution set changes as a parameter varies. A simple example is the equation:

−∆u = λu+ u3 (5.10)

For small λ, the only solution is u = 0. But at a critical value of λ, non-trivial solutions
branch o� from the trivial solution. This is known as a pitchfork bifurcation.

Figure 4: Semilinear Elliptic Equations. This �gure illustrates various aspects of semilinear
equations. (Top left) Di�erent types of nonlinear terms. (Top middle) Solution to a semilinear
equation. (Top right) Bifurcation diagram showing pitchfork bifurcation. (Bottom left)

Multiple solutions demonstrating non-uniqueness. (Bottom middle) Energy functional with
double-well potential. (Bottom right) Blow-up phenomenon showing �nite-time singularity.

6 Reaction-Di�usion Equations

Reaction-di�usion equations model the interaction between di�usion and a local reaction process.
A prototypical example is the Fisher-KPP equation:

ut = Duxx + f(u) (5.11)
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where f(u) = u(1 − u) is the logistic growth term. This equation models the spread of an
advantageous gene in a population. It admits traveling wave solutions of the form u(x, t) =
U(x− ct), where c is the wave speed.

Reaction-di�usion systems can also exhibit pattern formation through the Turing insta-

bility. When two chemicals with di�erent di�usion rates interact, the uniform steady state
can become unstable, leading to spatially periodic patterns. This mechanism is thought to be
responsible for many patterns in nature, such as animal coat patterns and vegetation patterns
in arid ecosystems.

Figure 5: Reaction-Di�usion Equations. This �gure illustrates reaction-di�usion phenom-
ena. (Top left) Fisher-KPP equation showing traveling wave solutions. (Top middle) Di�er-
ent reaction terms (Fisher-KPP, bistable, excitable). (Top right) Turing patterns arising from
di�usion-driven instability. (Bottom left) Phase plane analysis showing stability of equilibria.
(Bottom middle) Spiral waves in excitable media. (Bottom right)Wave speed as a function
of di�usion coe�cient.

7 Navier-Stokes Equations and Other Nonlinear PDEs

The Navier-Stokes equations describe the motion of viscous incompressible �uids:{
ut + (u · ∇)u = ν∆u−∇p+ f

∇ · u = 0
(5.12)

where u is the velocity, p is the pressure, ν is the kinematic viscosity, and f is an external
force. The nonlinear term (u · ∇)u represents the convective acceleration and is responsible for
the rich dynamics of �uid �ow, including turbulence.

The global existence and smoothness of solutions to the 3D Navier-Stokes equations is one
of the most important open problems in mathematics. While weak solutions are known to exist,
it is not known whether they remain smooth for all time or whether singularities can form.
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Other important nonlinear PDEs include theminimal surface equation, which arises from
the problem of �nding a surface of minimal area with a given boundary, and the Korteweg-de
Vries (KdV) equation, which models shallow water waves and admits soliton solutions.

Figure 6: Navier-Stokes and Other Nonlinear PDEs. This �gure illustrates various non-
linear phenomena. (Top left) Velocity �eld from Navier-Stokes equations. (Top middle)

Vorticity �eld showing rotational structures. (Top right) Reynolds number e�ect: transition
from laminar to turbulent �ow. (Bottom left) Energy cascade in turbulence (Kolmogorov -5/3
law). (Bottom middle) Minimal surface (catenoid). (Bottom right) Soliton solution to the
KdV equation.

8 Conclusion

This chapter has provided a glimpse into the vast and fascinating world of nonlinear partial
di�erential equations. We have introduced several powerful methods for proving the existence of
solutions, including �xed-point theorems, variational methods, and monotone operator theory.
We have also seen a variety of important examples of nonlinear PDEs that arise in applications.
The study of nonlinear PDEs is a very active area of research, and many fundamental questions
remain open. The methods and ideas introduced in this chapter provide a foundation for further
exploration of this rich and challenging �eld.
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Chapter 6

Sobolev Spaces and Weak Solutions

1 Introduction to Sobolev Spaces and Weak Solutions

The classical theory of partial di�erential equations, as discussed in the previous chapters, is
primarily concerned with �nding smooth, or classical, solutions. However, many PDEs that arise
from physical models or variational problems do not possess classical solutions. The solutions
may, for instance, have corners or other singularities. This limitation led to the development of
the concept of weak solutions, which are solutions in a generalized sense. The natural setting
for the study of weak solutions is the theory of Sobolev spaces, which are function spaces
designed to handle functions with weak derivatives.

Introduced by the Soviet mathematician Sergei Sobolev in the 1930s, these spaces have
become an indispensable tool in the modern theory of PDEs. They provide a natural framework
for proving the existence, uniqueness, and regularity of weak solutions to a vast range of linear
and nonlinear PDEs. This chapter provides a rigorous introduction to the theory of Sobolev
spaces and their application to elliptic boundary value problems.

1.1 Weak Derivatives

The key idea behind Sobolev spaces is to generalize the notion of a derivative. Instead of
requiring a function to be di�erentiable in the classical sense, we de�ne its derivative in a weak

sense by using integration by parts.

De�nition 1.1 (Weak Derivative). Let u ∈ L1
loc(Ω), where Ω is an open set in Rn. Let α be

a multi-index. We say that a function v ∈ L1
loc(Ω) is the α-th weak partial derivative of u,

and we write Dαu = v, if for every test function ϕ ∈ C∞
c (Ω) (i.e., an in�nitely di�erentiable

function with compact support in Ω),∫
Ω
u(x)Dαϕ(x) dx = (−1)|α|

∫
Ω
v(x)ϕ(x) dx (6.1)

If a weak derivative exists, it is unique (up to a set of measure zero). If a function is
continuously di�erentiable, its classical derivative is also its weak derivative. However, a function
can have a weak derivative even if it is not di�erentiable everywhere in the classical sense.

Example 1.2 (Weak derivative of |x|). Consider the function u(x) = |x| on the interval Ω =
(−1, 1). This function is not di�erentiable at x = 0. However, it has a weak derivative given by
the sign function:

v(x) = sgn(x) =

{
1 if x > 0

−1 if x < 0
(6.2)
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To see this, we integrate by parts:∫ 1

−1
|x|ϕ′(x) dx =

∫ 0

−1
−xϕ′(x) dx+

∫ 1

0
xϕ′(x) dx

= [−xϕ(x)]0−1 +

∫ 0

−1
ϕ(x) dx+ [xϕ(x)]10 −

∫ 1

0
ϕ(x) dx

=

∫ 0

−1
ϕ(x) dx−

∫ 1

0
ϕ(x) dx

= −
∫ 1

−1
sgn(x)ϕ(x) dx

since ϕ(−1) = ϕ(1) = 0. Thus, the weak derivative of |x| is sgn(x).

Figure 1: Weak Derivatives and Sobolev Spaces. This �gure illustrates the concept of weak
derivatives. (Top left) The function u(x) = |x| which is not classically di�erentiable at the
origin. (Top middle) Its weak derivative v(x) = sgn(x). (Top right) The Heaviside function
with a jump discontinuity. (Bottom left) The weak derivative of the Heaviside function is
the Dirac delta distribution. (Bottom middle) Smooth approximations to |x| converging to
the non-smooth function. (Bottom right) The de�nition of weak derivative via integration by
parts.

2 Sobolev Spaces

With the concept of weak derivatives, we can now de�ne Sobolev spaces.

De�nition 2.1 (Sobolev Space W k,p(Ω)). Let k be a non-negative integer and 1 ≤ p ≤ ∞. The
Sobolev space W k,p(Ω) is the set of all functions u ∈ Lp(Ω) such that for every multi-index α
with |α| ≤ k, the weak derivative Dαu exists and belongs to Lp(Ω).
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The Sobolev space W k,p(Ω) is a Banach space when equipped with the norm:

∥u∥Wk,p(Ω) =

 ∑
|α|≤k

∥Dαu∥pLp(Ω)

1/p

for 1 ≤ p < ∞ (6.3)

and

∥u∥Wk,∞(Ω) = max
|α|≤k

∥Dαu∥L∞(Ω) for p = ∞ (6.4)

In the special case p = 2, the Sobolev spacesW k,2(Ω) are Hilbert spaces, and they are usually
denoted by Hk(Ω). The inner product on Hk(Ω) is given by:

(u, v)Hk(Ω) =
∑
|α|≤k

∫
Ω
Dαu(x)Dαv(x) dx (6.5)

Figure 2: Sobolev Spaces and Norms. This �gure illustrates the structure of Sobolev spaces.
(Top left) Hierarchy of Sobolev spaces showing nested embeddings. (Top middle) Compo-
nents of the Sobolev norm. (Top right) Example of a function in H1 (for n > 1) that is not
continuous. (Bottom left) Density of smooth functions in Sobolev spaces. (Bottom middle)

Comparison of W 1,p norms for di�erent values of p. (Bottom right) Distinction between W 1,p
0

and W 1,p based on boundary conditions.

2.1 Properties of Sobolev Spaces

Sobolev spaces have many important properties that make them suitable for the study of PDEs.

� Completeness: Sobolev spaces are complete, i.e., they are Banach spaces (or Hilbert
spaces for p = 2). This is crucial for using functional analysis tools.
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� Re�exivity and Separability: If 1 < p < ∞, then W k,p(Ω) is a re�exive and separable
Banach space.

� Density: If Ω is su�ciently regular (e.g., has a Lipschitz boundary), then the space of
smooth functions C∞(Ω) is dense in W k,p(Ω). This means that any Sobolev function can
be approximated by a sequence of smooth functions.

� Sobolev spaces with zero boundary values: We de�ne W k,p
0 (Ω) as the closure of

C∞
c (Ω) in the W k,p(Ω) norm. Functions in W k,p

0 (Ω) can be thought of as functions in
W k,p(Ω) that are zero on the boundary ∂Ω in a generalized sense.

3 Sobolev Embedding Theorems

One of the most important aspects of Sobolev space theory is the relationship between di�erent
Sobolev spaces and between Sobolev spaces and classical function spaces like Ck(Ω) or Lq(Ω).
These relationships are described by the Sobolev embedding theorems.

The Sobolev embedding theorems tell us that if a function has enough weak derivatives in
Lp, then it must be more regular, for example, continuous or even continuously di�erentiable.
The amount of extra regularity depends on the dimension n and the integrability parameter p.

Theorem 3.1 (Gagliardo-Nirenberg-Sobolev Inequality). Let Ω be a bounded open set in Rn

with a C1 boundary. Let u ∈ W 1,p(Ω) with 1 ≤ p < n. Then u ∈ Lp∗(Ω), where p∗ = np
n−p is

the Sobolev conjugate of p. Moreover, there exists a constant C depending only on n and p such

that:

∥u∥Lp∗ (Ω) ≤ C∥∇u∥Lp(Ω) (6.6)

for all u ∈ W 1,p
0 (Ω).

This theorem shows that we gain integrability for functions in W 1,p(Ω). By applying this
theorem iteratively, we can obtain embeddings into spaces of continuous functions.

Theorem 3.2 (Sobolev Embedding Theorem). Let Ω be a bounded open set in Rn with a C1

boundary. Let u ∈ W k,p(Ω).

� If kp < n, then u ∈ Lq(Ω) for all 1 ≤ q ≤ np
n−kp .

� If kp = n, then u ∈ Lq(Ω) for all 1 ≤ q < ∞.

� If kp > n, then u ∈ Ck−[n/p]−1,γ(Ω) for some γ > 0, where [n/p] is the integer part of n/p.
This means that u is Hölder continuous.
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Figure 3: Sobolev Embeddings. This �gure illustrates Sobolev embedding theorems. (Top
left) The Sobolev conjugate p∗ as a function of p for di�erent dimensions n. (Top middle)

Embedding diagram showing W k,p ↪→ Lp∗ when kp < n. (Top right) Continuous embedding
into Hölder spaces when kp > n. (Bottom left) Rellich-Kondrachov compactness: bounded
sequences in H1 have convergent subsequences in L2. (Bottom middle) Poincaré inequality
relating L2 and gradient norms. (Bottom right) Embedding constants depend on domain size.

3.1 Compact Embeddings: Rellich-Kondrachov Theorem

For the direct method of the calculus of variations, we need not just a bounded sequence to
have a weakly convergent subsequence, but we often need the convergence to be strong in some
sense. This is provided by the Rellich-Kondrachov theorem, which gives conditions for the
embedding of a Sobolev space into another to be compact.

Theorem 3.3 (Rellich-Kondrachov Theorem). Let Ω be a bounded open set in Rn with a C1

boundary. Let 1 ≤ p < n. Then the embedding of W 1,p(Ω) into Lq(Ω) is compact for all

1 ≤ q < p∗ = np
n−p .

This theorem is extremely useful. It implies that if a sequence is bounded in W 1,p(Ω), then
we can extract a subsequence that converges strongly in Lq(Ω) for q < p∗. This is often the key
step in proving the existence of weak solutions to nonlinear PDEs.

4 Trace Theory

Another important question is how to de�ne the value of a Sobolev function on the boundary
of the domain. Since Sobolev functions are only de�ned up to a set of measure zero, the value
on the boundary (which has measure zero) is not well-de�ned. Trace theory provides a way
to give a precise meaning to the boundary values of Sobolev functions.

Theorem 4.1 (Trace Theorem). Let Ω be a bounded open set in Rn with a C1 boundary. There

exists a bounded linear operator T : W 1,p(Ω) → Lp(∂Ω), called the trace operator, such that:
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� T (u) = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω).

� ∥T (u)∥Lp(∂Ω) ≤ C∥u∥W 1,p(Ω) for some constant C.

The function T (u) is called the trace of u on ∂Ω. The kernel of the trace operator is the space

W 1,p
0 (Ω).

This theorem allows us to make sense of boundary conditions for weak solutions. For example,
a weak solution u to a PDE with Dirichlet boundary condition u = g on ∂Ω is a function in
W 1,p(Ω) such that its trace T (u) is equal to g.

Figure 4: Trace Theory. This �gure illustrates trace theory for Sobolev functions. (Top left)

Trace operator concept: restriction of a function to the boundary. (Top middle) Trace theorem
diagram showing the continuous operator from W 1,p to Lp(∂Ω). (Top right) Function in W 1,p

0

with zero trace. (Bottom left) Extension operator for extending functions from interior to
exterior. (Bottom middle) Boundary regularity a�ects trace properties. (Bottom right)

Trace inequality demonstrating continuity of the trace operator.

5 Application to Elliptic Equations: Weak Solutions

We now apply the machinery of Sobolev spaces to study the existence and uniqueness of weak
solutions to elliptic boundary value problems. Consider the Poisson equation with Dirichlet
boundary conditions: {

−∆u = f in Ω

u = 0 on ∂Ω
(6.7)

where f ∈ L2(Ω).
To �nd a weak solution, we multiply the equation by a test function v ∈ C∞

c (Ω) and integrate
by parts:
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∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx (6.8)

This leads to the following de�nition of a weak solution.

De�nition 5.1 (Weak Solution). A function u ∈ H1
0 (Ω) is a weak solution of the Dirichlet

problem for the Poisson equation if for all v ∈ H1
0 (Ω),∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx (6.9)

We can prove the existence and uniqueness of a weak solution using the Lax-Milgram

theorem. Let H = H1
0 (Ω). We de�ne a bilinear form B : H ×H → R and a linear functional

F : H → R by:

B(u, v) =

∫
Ω
∇u · ∇v dx

F (v) =

∫
Ω
fv dx

The weak formulation is then equivalent to �nding u ∈ H such that B(u, v) = F (v) for all
v ∈ H.

The Lax-Milgram theorem states that if B is bounded and coercive, then there exists a
unique solution. We can easily check that these conditions are satis�ed.

� Boundedness: By the Cauchy-Schwarz inequality,

|B(u, v)| =
∣∣∣∣∫

Ω
∇u · ∇v dx

∣∣∣∣ ≤ ∥∇u∥L2∥∇v∥L2 ≤ ∥u∥H1∥v∥H1

� Coercivity: By the Poincaré inequality, there exists a constant C such that ∥u∥L2 ≤
C∥∇u∥L2 for all u ∈ H1

0 (Ω). Then,

B(u, u) = ∥∇u∥2L2 ≥ 1

1 + C2
(∥∇u∥2L2 + ∥u∥2L2) =

1

1 + C2
∥u∥2H1

Thus, the Lax-Milgram theorem guarantees the existence of a unique weak solution u ∈
H1

0 (Ω).
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Figure 5: Weak Solutions to Elliptic Equations. This �gure illustrates weak solutions.
(Top left) Weak solution to the Poisson equation. (Top middle) Variational formulation
showing transition from classical to weak form. (Top right) Energy functional and its mini-
mizer. (Bottom left) Galerkin approximation using �nite-dimensional subspaces. (Bottom
middle) Lax-Milgram theorem conditions for existence and uniqueness. (Bottom right) Reg-
ularity hierarchy from weak to classical solutions.

5.1 Regularity of Weak Solutions

Once we have established the existence of a weak solution, a natural question is whether this
solution is also a classical solution, i.e., whether it is smooth. This is the subject of elliptic
regularity theory. The general principle is that if the data of the problem (the domain Ω,
the coe�cients of the operator, and the right-hand side f) are smooth, then the weak solution
is also smooth.

Theorem 5.2 (Interior Regularity). Let u ∈ H1(Ω) be a weak solution of −∆u = f . If f ∈
Hk(Ω) for some k ≥ 0, then u ∈ Hk+2

loc (Ω). In particular, if f ∈ C∞(Ω), then u ∈ C∞(Ω).

There are also regularity results up to the boundary, which state that if the boundary ∂Ω is
smooth, then the solution is smooth up to the boundary.
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Figure 6: Applications and Examples. This �gure shows applications of Sobolev space
theory. (Top left) Membrane de�ection modeled by the Poisson equation. (Top middle)

Steady-state heat distribution. (Top right) Electrostatic potential from two point charges.
(Bottom left) Convergence of the Galerkin method showing spectral accuracy. (Bottom

middle) Di�erent domain geometries a�ecting regularity. (Bottom right) Comparison table
of weak versus classical solutions.

6 Conclusion

Sobolev spaces provide the essential functional analytic framework for the modern theory of
partial di�erential equations. They allow us to de�ne the concept of a weak solution, which is
crucial for studying PDEs that do not have classical solutions. The Sobolev embedding theorems
and the Rellich-Kondrachov compactness theorem are powerful tools for proving the existence of
weak solutions. The Lax-Milgram theorem provides a general method for solving linear elliptic
problems in a weak sense. Finally, elliptic regularity theory allows us to show that weak solutions
are often classical solutions, thus bridging the gap between the modern and classical theories of
PDEs. The concepts and techniques introduced in this chapter are fundamental for the study
of more advanced topics in PDEs, including nonlinear equations and evolution problems.
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Chapter 7

Advanced Topics in Nonlinear Weak Solutions

1 Introduction to Advanced Topics in Nonlinear Weak Solutions

Building upon the foundations of Sobolev spaces and weak solutions established in the previous
chapter, we now delve into more advanced techniques for tackling nonlinear partial di�erential
equations. While the Lax-Milgram theorem provides a powerful tool for linear elliptic problems,
many PDEs of interest in physics and engineering are inherently nonlinear. The analysis of such
equations requires a more sophisticated functional analytic framework.

This chapter introduces several powerful methods for proving the existence of weak solutions
to nonlinear PDEs. We will explore three main pillars of modern nonlinear analysis: monotone
operator theory, variational methods for problems with critical growth, and bifurcation theory.
These techniques have been instrumental in making progress on a wide range of challenging
problems, from the study of non-Newtonian �uids to the analysis of geometric problems and
pattern formation.

2 Monotone Operator Theory

A large class of nonlinear elliptic problems can be formulated in terms of �nding a zero of a
nonlinear operator A : X → X∗, where X is a Banach space and X∗ is its dual. The theory of
monotone operators, developed in the 1960s by George Minty and Felix Browder, provides a
general framework for solving such equations.

De�nition 2.1 (Monotone Operator). Let X be a real Banach space. An operator A : X → X∗

is said to be monotone if for all u, v ∈ X,

⟨A(u)−A(v), u− v⟩ ≥ 0 (7.1)

where ⟨·, ·⟩ denotes the duality pairing between X∗ and X.

Monotonicity is a generalization of the property of being non-decreasing for real-valued
functions. The main result of monotone operator theory is the Browder-Minty theorem,
which gives conditions for a monotone operator to be surjective.

Theorem 2.2 (Browder-Minty Theorem). Let X be a re�exive, separable, real Banach space.

Let A : X → X∗ be a monotone, coercive, and continuous operator. Then A is surjective, i.e.,

for every f ∈ X∗, there exists a solution u ∈ X to the equation A(u) = f .

This theorem is a powerful tool for proving the existence of weak solutions to a wide class
of nonlinear elliptic equations, including the p-Laplacian equation.

Example 2.3 (The p-Laplacian). The p-Laplacian operator is de�ned by∆pu = div(|∇u|p−2∇u).
The corresponding weak formulation leads to the operator A :W 1,p

0 (Ω) →W−1,p′(Ω) de�ned by

⟨A(u), v⟩ =
∫
Ω
|∇u|p−2∇u · ∇v dx (7.2)

71
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This operator can be shown to be monotone, coercive, and continuous, and thus the Browder-
Minty theorem guarantees the existence of a weak solution to the p-Laplace equation −∆pu = f
for any f ∈W−1,p′(Ω).

Figure 1: Monotone Operators and the Browder-Minty Theorem. This �gure illus-
trates the theory of monotone operators. (Top left) Example of a monotone operator showing
increasing behaviour. (Top middle) Visualization of the monotonicity condition as a con-
tour plot. (Top right) Coercivity property showing growth to in�nity. (Bottom left) The
p-Laplacian nonlinearity for di�erent values of p. (Bottom middle) Browder-Minty theorem
diagram showing conditions for surjectivity. (Bottom right) Example of weak solution exis-
tence for the p-Laplace equation.

2.1 Proof of the Browder-Minty Theorem

The proof of the Browder-Minty theorem is a beautiful application of the Galerkin method and
compactness arguments. We provide a detailed proof below.

Proof. Let f ∈ X∗ be given. We want to �nd u ∈ X such that A(u) = f . The proof proceeds
in several steps.

Step 1: Galerkin Approximation. Since X is a separable Banach space, there exists a
countable basis {w1, w2, . . . } for X. For each n ∈ N, we de�ne the �nite-dimensional subspace
Xn = span{w1, . . . , wn}. We seek a solution un ∈ Xn to the projected equation

⟨A(un), wj⟩ = ⟨f, wj⟩ for j = 1, . . . , n (7.3)

Let un =
∑n

i=1 ciwi. Then this is a system of n nonlinear equations in the n unknowns c1, . . . , cn.
We de�ne an operator Pn : Xn → Xn by Pn(v) =

∑n
j=1(⟨A(v) − f, wj⟩)wj . A solution to

the Galerkin system is a vector un such that Pn(un) = 0. We consider the inner product
⟨Pn(v), v⟩ = ⟨A(v) − f, v⟩. By coercivity of A, for ∥v∥ = R large enough, ⟨A(v), v⟩ > ∥v∥∥f∥,
so ⟨Pn(v), v⟩ > 0. By Brouwer's �xed-point theorem, there exists a solution un ∈ Xn to the
Galerkin system.
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Step 2: A Priori Estimates. We now derive a uniform bound on the sequence of ap-
proximate solutions (un). From the Galerkin equation, we have ⟨A(un), un⟩ = ⟨f, un⟩. By
the coercivity of A, there exists a constant c > 0 such that ⟨A(un), un⟩ ≥ c∥un∥p. Thus,
c∥un∥p ≤ ∥f∥∥un∥, which implies that ∥un∥ is bounded independently of n.

Step 3: Compactness and Weak Convergence. Since X is a re�exive Banach space,
every bounded sequence has a weakly convergent subsequence. Thus, there exists a subsequence,
which we still denote by (un), and an element u ∈ X such that un ⇀ u weakly in X. Since A
is a continuous operator, A(un) is a bounded sequence in X∗. Since X∗ is also re�exive, there
exists a subsequence of A(un) that converges weakly to some χ ∈ X∗.

Step 4: Passing to the Limit. The �nal step is to show that χ = A(u) and that u is a
solution to the original equation. This is the most technical part of the proof. By monotonicity
of A, for any v ∈ Xk and n ≥ k, we have ⟨A(un) − A(v), un − v⟩ ≥ 0. Taking the limit as
n → ∞, we get ⟨χ − A(v), u − v⟩ ≥ 0. Now, let v = u − tw for w ∈ X and t > 0. Then
⟨χ − A(u − tw), tw⟩ ≥ 0, which implies ⟨χ − A(u − tw), w⟩ ≥ 0. Taking the limit as t → 0, by
the continuity of A, we get ⟨χ−A(u), w⟩ ≥ 0 for all w ∈ X. This implies χ = A(u).

Finally, we show that A(u) = f . For any �xed k, and for n ≥ k, we have ⟨A(un), wk⟩ =
⟨f, wk⟩. Taking the limit as n→ ∞, we get ⟨A(u), wk⟩ = ⟨f, wk⟩ for all k. Since the set {wk} is
a basis for X, this implies that A(u) = f .

3 Variational Methods for Critical Growth Problems

Another powerful technique for solving nonlinear PDEs is the calculus of variations. The idea
is to �nd a solution as a critical point (e.g., a minimizer) of an associated energy functional. For
this to work, we need the functional to be coercive and weakly lower semicontinuous, which is
guaranteed by the Rellich-Kondrachov theorem for subcritical problems.

However, a major di�culty arises in the case of critical growth, where the nonlinearity has
the same growth rate as the one in the Sobolev embedding theorem. In this case, the embedding
is not compact, and the weak lower semicontinuity of the energy functional is lost. This is
a signi�cant challenge, as many important problems in geometry and physics exhibit critical
growth.

Example 3.1 (The Yamabe Problem). A famous example is the Yamabe problem in di�erential
geometry, which involves solving the equation

−∆u+ c(x)u = f(x)up−1 (7.4)

on a compact Riemannian manifold, where p = 2n
n−2 is the critical Sobolev exponent. The

solution of this equation allows one to �nd a metric of constant scalar curvature.

To overcome the lack of compactness, more sophisticated techniques are needed, such as
the concentration-compactness principle of Pierre-Louis Lions, or methods based on the
mountain pass theorem of Ambrosetti and Rabinowitz.

Theorem 3.2 (Mountain Pass Theorem). Let E be a real Banach space and let I ∈ C1(E,R).
Suppose that I(0) = 0 and there exist ρ, α > 0 such that I(u) ≥ α for all u ∈ E with ∥u∥ = ρ,
and there exists e ∈ E with ∥e∥ > ρ such that I(e) < 0. Then there exists a sequence (uk) in E
such that I(uk) → c > 0 and I ′(uk) → 0, where c is the mountain pass level.

Under certain additional conditions (the Palais-Smale condition), one can show that this
sequence converges to a critical point of I, which is a weak solution of the corresponding PDE.
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Figure 2: Variational Methods and Critical Points. This �gure illustrates variational
methods for nonlinear PDEs. (Top left) Energy functional with multiple critical points. (Top
middle) Direct method showing a minimizing sequence converging to the in�mum. (Top right)
Weak lower semicontinuity and weak convergence. (Bottom left) Mountain pass geometry
showing saddle point structure. (Bottom middle) Palais-Smale sequence with energy con-
verging and gradient vanishing. (Bottom right) Critical Sobolev exponent as a function of
dimension.

3.1 The Palais-Smale Condition

The Palais-Smale (PS) condition is a compactness condition that is crucial for the application of
variational methods. It ensures that any sequence that is 'almost' a critical point (in the sense
that the derivative of the functional is small) has a convergent subsequence. This prevents the
'loss of mass' at in�nity that can occur in problems with a lack of compactness.

De�nition 3.3 (Palais-Smale Condition). Let I : E → R be a C1 functional on a Banach space
E. We say that I satis�es the Palais-Smale (PS) condition if any sequence (uk) in E such
that I(uk) is bounded and I ′(uk) → 0 in E∗ has a convergent subsequence.

Verifying the PS condition is often the most di�cult part of applying the mountain pass
theorem. For problems with critical growth, the PS condition may fail at certain energy levels.
This is where the concentration-compactness principle comes into play, as it provides a precise
description of how the PS condition can fail.

3.2 Concentration-Compactness Principle

The concentration-compactness principle, developed by Pierre-Louis Lions, is a powerful tool
for analyzing sequences in Sobolev spaces that lack compactness. It provides a dichotomy for
weakly convergent sequences, stating that such a sequence either converges strongly, or it splits
into a sum of 'bubbles' that concentrate at di�erent points in the domain.
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This principle allows one to analyze the behavior of minimizing sequences for variational
problems with critical growth and to prove the existence of solutions by ruling out the possibility
of concentration.

4 Bifurcation Theory

Bifurcation theory is the study of how the set of solutions to a nonlinear equation changes as a
parameter in the equation is varied. A bifurcation occurs when a small change in the parameter
leads to a qualitative change in the solution set, such as the appearance of new solutions.

Consider a nonlinear equation of the form

F (u, λ) = 0 (7.5)

where u is the solution and λ is a real parameter. We are interested in how the solutions u
depend on λ. A bifurcation point is a point (λ0, u0) such that in any neighborhood of this point,
there are solutions that are not on the same solution branch.

Example 4.1 (Bifurcation from a simple eigenvalue). A classical example is the problem

−∆u = λu+ u3 (7.6)

in a bounded domain Ω with zero boundary conditions. This equation always has the trivial
solution u = 0. However, as λ increases past the �rst eigenvalue of the Laplacian, two new
non-trivial solutions bifurcate from the trivial solution branch.

The study of bifurcation phenomena often involves techniques from degree theory, such as
the Leray-Schauder degree, and methods based on the implicit function theorem and the
Lyapunov-Schmidt reduction.
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Figure 3: Bifurcation Theory. This �gure illustrates bifurcation phenomena in nonlinear
PDEs. (Top left) Pitchfork bifurcation showing symmetric branching. (Top middle) Tran-
scritical bifurcation with exchange of stability. (Top right) Saddle-node bifurcation (fold).
(Bottom left) Eigenvalues of the Laplacian as bifurcation points. (Bottom middle) Multi-
ple solution branches in a bifurcation diagram. (Bottom right) Lyapunov-Schmidt reduction
showing dimensional reduction from in�nite to �nite dimensions.

4.1 Leray-Schauder Degree

The Leray-Schauder degree is a topological invariant that generalizes the winding number of a
curve in the complex plane to in�nite-dimensional spaces. It provides a way to count the number
of solutions to a nonlinear equation inside a given domain.

If the Leray-Schauder degree of an operator is non-zero on a certain domain, then there
must be at least one solution to the equation inside that domain. This is a powerful tool for
proving the existence of solutions and for studying how the solution set changes as parameters
are varied.

4.2 Lyapunov-Schmidt Reduction

The Lyapunov-Schmidt reduction is a technique for reducing an in�nite-dimensional bifurcation
problem to a �nite-dimensional one. The idea is to split the space into the kernel of the linearized
operator and its complement. The original equation is then split into two coupled equations,
one on the kernel and one on its complement. The equation on the complement can be solved
using the implicit function theorem, and the problem is reduced to solving a �nite-dimensional
bifurcation equation on the kernel.

This technique is particularly useful for studying bifurcation from a simple eigenvalue, where
the kernel of the linearized operator is one-dimensional.
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5 Regularity of Nonlinear Weak Solutions

As in the linear case, once we have established the existence of a weak solution to a nonlinear
PDE, we are interested in its regularity. The regularity theory for nonlinear equations is much
more complex than for linear equations. The regularity of the solution depends not only on the
regularity of the data but also on the structure of the nonlinearity.

For semilinear equations of the form −∆u = f(u), a bootstrapping argument can often be
used to show that if f is smooth, then any weak solution is also smooth. However, for quasilinear
equations like the p-Laplacian, the regularity theory is much more challenging. The solutions
are typically not C2 but only C1,α for some α > 0. The study of the regularity of solutions to
the Navier-Stokes equations is one of the most famous open problems in mathematics (one of
the Millennium Prize Problems).

Figure 4: Regularity Theory for Nonlinear Equations. This �gure illustrates regular-
ity concepts. (Top left) Bootstrapping argument showing progressive regularity improvement.
(Top middle) Hölder continuous function typical of p-Laplacian solutions. (Top right) Reg-
ularity versus growth parameter p. (Bottom left) De Giorgi-Nash-Moser theory showing os-
cillation decay. (Bottom middle) Comparison of di�erent regularity levels. (Bottom right)

Regularity hierarchy showing nested function spaces.

5.1 De Giorgi-Nash-Moser Theory

For linear elliptic equations with rough coe�cients, the De Giorgi-Nash-Moser theory provides
a way to prove the Hölder continuity of weak solutions. This theory has been extended to
certain classes of quasilinear equations, such as the p-Laplacian, and is a fundamental tool in
the regularity theory for nonlinear PDEs.
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6 Variational Inequalities and Obstacle Problems

An important class of nonlinear problems arises from variational inequalities, where the
solution is required to satisfy an inequality rather than an equation. A classical example is the
obstacle problem, where we seek a function u that minimizes an energy functional subject to
the constraint that u ≥ ψ for some given obstacle function ψ.

The weak formulation of the obstacle problem is: �nd u ∈ K such that∫
Ω
∇u · ∇(v − u) dx ≥

∫
Ω
f(v − u) dx (7.7)

for all v ∈ K, where K = {v ∈ H1
0 (Ω) : v ≥ ψ} is a closed convex set.

The solution to this problem can be characterized as the projection of the unconstrained
solution onto the convex set K. The set where u = ψ is called the contact set, and its
boundary is called the free boundary. The study of free boundary problems is an active area
of research in PDE theory.

Figure 5: Variational Inequalities and Obstacle Problems. This �gure illustrates vari-
ational inequalities. (Top left) One-dimensional obstacle problem showing solution staying
above obstacle. (Top middle) Contact set where solution touches the obstacle. (Top right)

Variational inequality formulation. (Bottom left) Projection onto convex set in �nite dimen-
sions. (Bottom middle) Free boundary separating contact and non-contact regions. (Bottom
right) Two-dimensional obstacle problem visualization.

7 Applications

The techniques developed in this chapter have numerous applications across mathematics, physics,
and engineering. We will now explore some of these applications in more detail.
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7.1 Non-Newtonian Fluids and the p-Laplacian

Many �uids, such as ketchup, toothpaste, and blood, do not follow the linear stress-strain
relationship of Newtonian �uids. These non-Newtonian �uids are often modeled by a power-
law relationship, where the stress tensor τ is related to the rate of strain tensor D by τ =
µ|D|p−2D, where p is a parameter that characterizes the �uid. For p = 2, we recover the
Newtonian case. For p < 2, the �uid is shear-thinning, and for p > 2, it is shear-thickening.

The stationary, incompressible �ow of such a �uid is governed by the equations

−div(µ|D(u)|p−2D(u)) +∇π = f (7.8)

div(u) = 0 (7.9)

where u is the velocity �eld and π is the pressure. The �rst equation is a generalization of the
Stokes equations and involves the p-Laplacian operator. The existence of weak solutions to this
system can be established using the theory of monotone operators.

7.2 Minimal Surfaces

A classical problem in the calculus of variations is to �nd a surface of minimal area with a given
boundary. This leads to the minimal surface equation, which is a quasilinear elliptic PDE.
For a surface given by the graph of a function u(x, y), the area is given by the functional

I(u) =

∫
Ω

√
1 + |∇u|2 dx (7.10)

The Euler-Lagrange equation for this functional is

div

(
∇u√

1 + |∇u|2

)
= 0 (7.11)

This is a highly nonlinear equation, and the existence of solutions requires advanced techniques
from geometric measure theory and the calculus of variations.

7.3 Reaction-Di�usion Systems and Pattern Formation

Reaction-di�usion systems are mathematical models that describe how the concentration of one
or more substances distributed in space changes under the in�uence of two processes: local
chemical reactions in which the substances are transformed into each other, and di�usion which
causes the substances to spread out over a surface in space. A simple example is the Fisher-KPP
equation

ut = D∆u+ ru(1− u) (7.12)

which models the spread of an advantageous gene in a population. The interplay between
the reaction and di�usion terms can lead to the formation of complex spatial patterns, such
as traveling waves, spiral waves, and Turing patterns. Bifurcation theory is a key tool for
understanding how these patterns arise as parameters in the system are varied.

7.4 Elasticity and Contact Problems

In solid mechanics, variational inequalities are used to model contact problems in elasticity.
For example, consider an elastic membrane stretched over a domain Ω and constrained to lie
above an obstacle. The displacement of the membrane minimizes the elastic energy subject to
the obstacle constraint. This leads to a variational inequality, and the solution exhibits a free
boundary that separates the region where the membrane is in contact with the obstacle from
the region where it is not.
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7.5 Optimal Control

Variational inequalities also arise in the �eld of optimal control, where one seeks to �nd a control
that minimizes a certain cost functional subject to constraints on the state and control variables.
The necessary conditions for optimality often take the form of a variational inequality.

Figure 6: Applications of Nonlinear Weak Solutions. This �gure shows applications across
di�erent �elds. (Top left) Minimal surface with zero mean curvature. (Top middle) Non-
Newtonian �uid showing power-law behaviour. (Top right) Elastic membrane under nonlinear
elasticity. (Bottom left) Reaction-di�usion pattern from Turing instability. (Bottom mid-

dle) Phase transition modeled by Allen-Cahn equation. (Bottom right) Summary table of
applications and their corresponding nonlinear PDEs.

8 Conclusion

This chapter has provided a glimpse into the rich and complex world of nonlinear partial dif-
ferential equations. We have seen how the functional analytic tools developed in the previous
chapters can be extended and adapted to tackle nonlinear problems. Monotone operator the-
ory, variational methods, and bifurcation theory are just a few of the many powerful techniques
that have been developed to study nonlinear PDEs. The �eld is still very active, with many
fundamental questions remaining open, particularly in the areas of regularity and the behavior
of solutions to equations arising from �uid dynamics and other areas of physics.
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Chapter 8

Stochastic Partial Di�erential Equations

1 Introduction to Stochastic Partial Di�erential Equations

Stochastic Partial Di�erential Equations (SPDEs) represent one of the most challenging and
rapidly developing areas of modern mathematical analysis. They arise naturally when one seeks
to model physical, biological, or �nancial systems that evolve in both space and time under
the in�uence of random perturbations. Unlike ordinary stochastic di�erential equations (SDEs),
which describe the evolution of �nite-dimensional random processes, SPDEs govern the dynamics
of in�nite-dimensional stochastic processes, such as random �elds.

The mathematical theory of SPDEs is considerably more intricate than that of deterministic
PDEs. This complexity stems from the need to combine tools from functional analysis, operator
theory, and probability theory in a coherent framework. A central di�culty lies in giving precise
mathematical meaning to the noise term, which is often modeled as space-time white noise�a
highly singular object that is neither a function nor even a measure in the classical sense.

1.1 Historical Development

The systematic study of SPDEs began in the 1960s and 1970s, building upon the foundational
work of Kiyosi Itô on stochastic calculus. Walsh's in�uential 1986 monograph provided the �rst
comprehensive treatment of SPDEs driven by space-time white noise. Subsequent developments
by Da Prato and Zabczyk in the 1990s established the semigroup approach as a powerful tool
for analyzing linear and semilinear SPDEs in Hilbert spaces.

In recent years, the �eld has witnessed remarkable breakthroughs. Martin Hairer's theory of
regularity structures, introduced in 2014, provided a general framework for constructing solutions
to highly singular SPDEs, including the stochastic quantization equations arising in quantum
�eld theory. This work was recognized with the Fields Medal in 2014.

1.2 Applications

SPDEs arise in a diverse array of applications across the natural sciences, engineering, and
�nance. In statistical mechanics, they describe the evolution of systems with many degrees of
freedom subject to thermal �uctuations. In �uid dynamics, stochastic Navier-Stokes equations
model turbulent �ow. In mathematical �nance, SPDEs govern the dynamics of interest rate
curves and volatility surfaces. In neuroscience, they describe the propagation of electrical signals
in dendrites subject to ion channel noise.

82
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Figure 1: Brownian Motion and Stochastic Processes. This �gure illustrates fundamental
concepts in stochastic calculus. (a) A single path of standard Brownian motion showing contin-
uous but nowhere di�erentiable behaviour. (b) Multiple independent Brownian paths demon-
strating the variability of stochastic processes. (c) Quadratic variation [W,W ](t) converging to
t, a key property distinguishing Brownian motion from smooth functions. (d) Two-dimensional
Brownian motion as a projection of cylindrical Brownian motion in in�nite dimensions. (e) Itô
integral

∫ t
0 W dW = 1

2(W
2− t) demonstrating the correction term from Itô's formula. (f)White

noise as the formal derivative of Brownian motion, showing highly irregular behaviour.

2 Stochastic Calculus in In�nite Dimensions

To develop a rigorous theory of SPDEs, we must �rst extend the machinery of stochastic calculus
from �nite-dimensional spaces to in�nite-dimensional Hilbert spaces. This extension is non-
trivial and requires careful attention to topological and measure-theoretic subtleties.

2.1 Cylindrical Brownian Motion

Let H be a separable Hilbert space with inner product ⟨·, ·⟩H and norm ∥ · ∥H . In the �nite-
dimensional case, Brownian motion can be characterized by its covariance structure. In in�nite
dimensions, we encounter an immediate di�culty: there does not exist a Gaussian measure on
H with identity covariance operator unless H is �nite-dimensional. This is a consequence of the
fact that the trace of the identity operator on an in�nite-dimensional space is in�nite.

To circumvent this obstacle, we introduce the notion of cylindrical Brownian motion, which
is not a genuine H-valued process but rather a family of real-valued Brownian motions indexed
by elements of H.

De�nition 2.1 (Cylindrical Brownian Motion). Let H be a separable Hilbert space. A cylin-

drical Brownian motion on H is a family of real-valued Brownian motions {Wh(t)}h∈H,t≥0

de�ned on a probability space (Ω,F ,P) such that:
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(i) For each h ∈ H, the process Wh(t) is a standard real-valued Brownian motion.

(ii) The mapping h 7→ Wh(t) is linear for each �xed t ≥ 0.

(iii) For any h1, h2 ∈ H and s, t ≥ 0, the covariance is given by

E[Wh1(t)Wh2(s)] = (t ∧ s)⟨h1, h2⟩H . (8.1)

This de�nition captures the essential property that the covariance structure is determined
by the inner product on H. However, for a general separable Hilbert space H, the cylindrical
Brownian motion does not take values in H itself. To obtain an H-valued process, we must
introduce a covariance operator.

2.2 Q-Wiener Processes

Let Q : H → H be a positive, self-adjoint, trace-class operator. Such an operator can be
diagonalized with respect to an orthonormal basis {ek}∞k=1 of H:

Qek = λkek, k = 1, 2, 3, . . . (8.2)

where λk ≥ 0 are the eigenvalues and
∑∞

k=1 λk = Tr(Q) < ∞.

De�nition 2.2 (Q-Wiener Process). A Q-Wiener process on H is an H-valued stochastic
process WQ(t) de�ned by

WQ(t) =
∞∑
k=1

√
λkβk(t)ek (8.3)

where {βk(t)}∞k=1 are independent standard real-valued Brownian motions.

The series in equation (8.3) converges in L2(Ω;H) because

E
[
∥WQ(t)∥2H

]
=

∞∑
k=1

λkE[βk(t)2] = t

∞∑
k=1

λk = tTr(Q) < ∞. (8.4)

The Q-Wiener process is the in�nite-dimensional analogue of Brownian motion with co-
variance matrix Q. When Q = I (the identity operator), we recover the cylindrical Brownian
motion, which does not take values in H unless H is �nite-dimensional.

2.3 Stochastic Integration

The construction of the stochastic integral with respect to a cylindrical Brownian motion or a
Q-Wiener process is a delicate matter. We must specify the class of integrands for which the
integral is well-de�ned.

Let L(H) denote the space of bounded linear operators on H, and let L2(H) denote the
space of Hilbert-Schmidt operators on H. An operator T ∈ L(H) is Hilbert-Schmidt if

∥T∥2L2(H) =
∞∑
k=1

∥Tek∥2H < ∞ (8.5)

for any orthonormal basis {ek}∞k=1 of H.

De�nition 2.3 (Stochastic Integral). Let Φ : [0, T ]×Ω → L2(H) be a predictable process such
that

E
[∫ T

0
∥Φ(s)∥2L2(H)ds

]
< ∞. (8.6)
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The stochastic integral of Φ with respect to the cylindrical Brownian motion W is de�ned by∫ t

0
Φ(s)dW (s) =

∞∑
k=1

∫ t

0
Φ(s)ekdβk(s) (8.7)

where the series converges in L2(Ω;H).

This de�nition extends the Itô integral from �nite to in�nite dimensions. The key require-
ment is that Φ be Hilbert-Schmidt, which ensures that the sum over modes converges.

2.4 Itô's Formula in In�nite Dimensions

Itô's formula is the cornerstone of stochastic calculus, providing a chain rule for stochastic
processes. In in�nite dimensions, the formula takes a more complex form due to the presence of
the trace term.

Theorem 2.4 (Itô's Formula in In�nite Dimensions). Let u(t) be the mild solution of the stochas-
tic evolution equation

du(t) = (Au(t) + F (t, u(t)))dt+B(t, u(t))dW (t) (8.8)

where A is the generator of a C0-semigroup on H, F : [0, T ] × H → H and B : [0, T ] × H →
L2(H) are suitable coe�cients. Let Φ : H → R be a C2 function with bounded �rst and second
derivatives. Then

dΦ(u(t)) =

(
⟨Φ′(u(t)), Au(t) + F (t, u(t))⟩H +

1

2
Tr(Φ′′(u(t))B(t, u(t))QB(t, u(t))∗)

)
dt

+ ⟨Φ′(u(t)), B(t, u(t))dW (t)⟩H
(8.9)

where Φ′(u) denotes the Fréchet derivative of Φ at u, Φ′′(u) denotes the second Fréchet derivative,
and Q is the covariance operator of the noise.

The proof of this theorem follows the same general strategy as in �nite dimensions, using a
Taylor expansion and the quadratic variation of the Brownian motion. However, the in�nite-
dimensional setting requires careful treatment of the trace term, which may be in�nite if the
covariance operator Q is not trace-class.
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Figure 2: Itô's Formula and Stochastic Calculus. This �gure illustrates key concepts in
stochastic calculus. (a) Itô's formula for W 2 showing that d(W 2) = 2W dW + dt, with the
quadratic variation term t appearing as a correction. (b) Comparison of Itô and Stratonovich
integrals, di�ering by the quadratic variation term. (c) Geometric Brownian motion dS =
µS dt + σS dW used in the Black-Scholes model. (d) Ornstein-Uhlenbeck process exhibiting
mean reversion. (e) Martingale property of Brownian motion with E[W (t)] = 0. (f) Quadratic
covariation of independent Brownian motions vanishing in expectation.

3 The Stochastic Heat Equation

We now turn to the study of speci�c SPDEs, beginning with the stochastic heat equation, which
serves as a prototypical example.

3.1 Formulation of the Problem

Consider a bounded domain Ω ⊂ Rd with smooth boundary ∂Ω. The stochastic heat equation
is given by 

∂u
∂t (t, x) =

1
2∆u(t, x) + σ(u(t, x))Ẇ (t, x), t > 0, x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(8.10)

where Ẇ (t, x) denotes space-time white noise and σ : R → R is a Lipschitz continuous function.
The notation Ẇ (t, x) is purely formal, as white noise is not a function but a generalized

random �eld. To give precise meaning to equation (8.10), we reformulate it as a stochastic
evolution equation in the Hilbert space H = L2(Ω).
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3.2 Semigroup Formulation

Let A = 1
2∆ be the Laplacian with Dirichlet boundary conditions, viewed as an unbounded

operator on L2(Ω) with domain D(A) = H2(Ω) ∩H1
0 (Ω). The operator A generates a strongly

continuous semigroup S(t) = etA on L2(Ω), known as the heat semigroup.
We rewrite equation (8.10) as

du(t) = Au(t)dt+ σ(u(t))dW (t) (8.11)

where W (t) is a cylindrical Brownian motion on L2(Ω).
A mild solution of equation (8.11) is a process u(t) satisfying

u(t) = S(t)u0 +

∫ t

0
S(t− s)σ(u(s))dW (s). (8.12)

This integral formulation avoids the need to di�erentiate the solution, which may not be
di�erentiable in the classical sense.

3.3 Existence and Uniqueness

The existence and uniqueness of mild solutions to the stochastic heat equation can be established
using a �xed-point argument.

Theorem 3.1 (Existence and Uniqueness for the Stochastic Heat Equation). Let σ : R → R be
Lipschitz continuous with Lipschitz constant L. Assume that u0 ∈ L2(Ω). Then there exists a
unique mild solution u(t) to equation (8.11) in the space C([0, T ];L2(Ω)) for any T > 0.

Proof Sketch. We use a contraction mapping argument. De�ne the map Γ : C([0, T ];L2(Ω)) →
C([0, T ];L2(Ω)) by

(Γv)(t) = S(t)u0 +

∫ t

0
S(t− s)σ(v(s))dW (s). (8.13)

We must show that Γ is a contraction on a suitable space. Using the Lipschitz continuity of
σ and properties of the heat semigroup, one can show that

E
[
∥(Γv1)(t)− (Γv2)(t)∥2L2(Ω)

]
≤ CL2

∫ t

0
E
[
∥v1(s)− v2(s)∥2L2(Ω)

]
ds (8.14)

for some constant C > 0. By choosing T su�ciently small, the map Γ becomes a contraction,
and the Banach �xed-point theorem yields a unique solution on [0, T ]. The solution can then
be extended to arbitrary time intervals by iteration.
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Figure 3: The Stochastic Heat Equation. This �gure illustrates the stochastic heat equation.
(a) Deterministic heat equation showing exponential decay of the initial sine wave. (b) Single
realization of the stochastic heat equation showing irregular �uctuations due to noise. (c) Space-
time evolution showing how noise accumulates over time. (d) Multiple realizations at �nal time
demonstrating variability between sample paths. (e) Mean and standard deviation computed
from 100 realizations, showing how uncertainty grows. (f) Spatial covariance matrix at �nal
time revealing correlation structure.

3.4 Regularity Properties

An important question concerns the regularity of solutions to the stochastic heat equation. In
the deterministic case, the heat equation has a smoothing e�ect: even if the initial data is merely
in L2(Ω), the solution becomes smooth for t > 0. In the stochastic case, the situation is more
delicate due to the roughness of the noise.

Theorem 3.2 (Spatial Regularity). Let u(t) be the mild solution of the stochastic heat equation
(8.11) with σ(u) = u (additive noise). Then for any t > 0 and α < 1

2 , the solution u(t, ·) belongs
to the Hölder space Cα(Ω) almost surely.

This result shows that the stochastic heat equation has a regularizing e�ect, but the regularity
is limited by the roughness of the noise. The exponent α < 1

2 is sharp and re�ects the Hölder
continuity of Brownian paths.
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Figure 4: Semigroup Approach to SPDEs. This �gure illustrates the semigroup method for
solving SPDEs. (a) Heat semigroup S(t) showing exponential decay of modes. (b) Semigroup
property S(t + s) = S(t)S(s) veri�ed numerically. (c) Mild solution formula decomposing the
solution into deterministic and stochastic parts. (d) Eigenfunctions of the Laplacian forming
a complete orthonormal basis. (e) Spectral decay rates showing faster decay for higher modes.
(f) Covariance operator Q of the stochastic part.

4 The Stochastic Wave Equation

In contrast to the stochastic heat equation, the stochastic wave equation does not enjoy the
same smoothing properties, making its analysis considerably more challenging.

4.1 Formulation

The stochastic wave equation is given by
∂2u
∂t2

(t, x) = ∆u(t, x) + Ẇ (t, x), t > 0, x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x),
∂u
∂t (0, x) = v0(x), x ∈ Ω.

(8.15)

To reformulate this as a �rst-order system, we introduce the velocity v(t, x) = ∂u
∂t (t, x) and

write
d

dt

(
u(t)
v(t)

)
=

(
0 I
∆ 0

)(
u(t)
v(t)

)
+

(
0

dW (t)

)
. (8.16)

This system can be analyzed using semigroup methods, but the generator does not have the
same favorable properties as the heat operator.
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4.2 Energy Estimates

A key tool in the analysis of the wave equation is the energy functional

E(t) =
1

2

∫
Ω

(∣∣∣∣∂u∂t (t, x)
∣∣∣∣2 + |∇u(t, x)|2

)
dx. (8.17)

In the deterministic case, the energy is conserved. In the stochastic case, the energy grows
due to the random forcing.

Proposition 4.1 (Energy Growth). Let u(t) be the solution of the stochastic wave equation
(8.15) with additive noise. Then

E[E(t)] = E(0) + Ct (8.18)

for some constant C > 0 depending on the noise intensity.

This result shows that the energy grows linearly in time on average, re�ecting the continuous
injection of energy by the noise.

Figure 5: The Stochastic Wave Equation. This �gure illustrates the stochastic wave equa-
tion. (a) Deterministic wave equation showing traveling wave propagation. (b) Single realiza-
tion of the stochastic wave equation with random forcing. (c) Space-time evolution showing wave
propagation with stochastic perturbations. (d)Multiple realizations at �nal time demonstrating
sample path variability. (e) Energy evolution showing �uctuations due to random forcing. (f)
Comparison of deterministic and stochastic solutions at �nal time.

5 Applications of SPDEs

SPDEs have found applications in a remarkably diverse array of �elds. We now discuss several
important application areas in greater detail.
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5.1 Mathematical Finance

In mathematical �nance, SPDEs arise naturally in the modeling of interest rate curves and
volatility surfaces. The Heath-Jarrow-Morton (HJM) framework describes the evolution of the
entire forward rate curve f(t, T ) as a function of time t and maturity T . Under the risk-neutral
measure, the forward rate satis�es the SPDE

df(t, T ) = σ(t, T )

(∫ T

t
σ(t, s)ds

)
dt+ σ(t, T )dW (t) (8.19)

where σ(t, T ) is the volatility of the forward rate and W (t) is a Brownian motion.
This equation is an in�nite-dimensional SDE, as the state space consists of all forward rate

curves. The no-arbitrage condition imposes a speci�c drift term, ensuring that discounted bond
prices are martingales.

5.2 Filtering Theory

In �ltering theory, one seeks to estimate the state of a dynamical system from noisy observations.
The Zakai equation is a linear SPDE that describes the evolution of the unnormalized conditional
density of the signal.

Consider a signal process X(t) satisfying

dX(t) = b(X(t))dt+ σdW1(t) (8.20)

and an observation process Y (t) given by

dY (t) = h(X(t))dt+ dW2(t) (8.21)

where W1(t) and W2(t) are independent Brownian motions.
The Zakai equation for the unnormalized conditional density ρ(t, x) is

dρ(t, x) = L∗ρ(t, x)dt+ h(x)ρ(t, x)dY (t) (8.22)

where L∗ is the adjoint of the generator of the signal process.

5.3 Fluid Dynamics

In �uid dynamics, stochastic forcing is used to model turbulent �uctuations. The stochastic
Navier-Stokes equations are given by

∂u

∂t
+ (u · ∇)u = ν∆u−∇p+ f + Ẇ (t, x) (8.23)

where u(t, x) is the velocity �eld, p(t, x) is the pressure, ν is the viscosity, f is a deterministic
forcing, and Ẇ (t, x) is space-time white noise.

The analysis of the stochastic Navier-Stokes equations is extremely challenging. In two
dimensions, global existence and uniqueness of solutions have been established. In three dimen-
sions, the question of global regularity remains open, even in the deterministic case.

5.4 Neurobiology

In neurobiology, the cable equation describes the propagation of electrical signals along a den-
dritic cable. The stochastic cable equation incorporates random �uctuations due to the stochas-
tic opening and closing of ion channels:

∂V

∂t
(t, x) =

∂2V

∂x2
(t, x)− V (t, x) + I(t, x) + σẆ (t, x) (8.24)
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where V (t, x) is the membrane potential, I(t, x) is the injected current, and σ is the noise
intensity.

This equation is a stochastic reaction-di�usion equation and can be analyzed using the
methods developed for the stochastic heat equation.

Figure 6: Applications of Stochastic PDEs. This �gure shows diverse applications of SPDEs
across di�erent �elds. (a) Stock price dynamics modeled by geometric Brownian motion in math-
ematical �nance. (b) Vasicek interest rate model showing mean reversion. (c) Filtering theory
for signal estimation from noisy observations. (d) Turbulent velocity �eld in �uid dynamics.
(e) Cable equation with stochastic ion channel noise in neurobiology. (f) Summary table of
SPDE applications across various domains.

6 Malliavin Calculus and its Application to SPDEs

Malliavin calculus, also known as the stochastic calculus of variations, is a powerful tool for the
analysis of stochastic processes. It provides a di�erential calculus on Wiener space, allowing one
to de�ne derivatives of random variables and to prove integration by parts formulas. Malliavin
calculus has found numerous applications in mathematical �nance, stochastic control, and the
study of SPDEs.

6.1 Historical Background

Malliavin calculus was introduced by Paul Malliavin in 1976 as a tool to prove Hörmander's the-
orem on the smoothness of densities for solutions of stochastic di�erential equations. The key
insight was to develop a calculus on Wiener space that allows one to di�erentiate random vari-
ables with respect to the underlying Brownian motion. This approach provided a probabilistic
alternative to the analytic methods based on partial di�erential equations.

The theory was subsequently developed and extended by many authors, including Stroock,
Bismut, Watanabe, and Nualart. Today, Malliavin calculus is a fundamental tool in stochastic
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analysis, with applications ranging from mathematical �nance to quantum �eld theory.

6.2 Wiener Chaos Decomposition

The starting point of Malliavin calculus is the observation that the space of square-integrable
random variables on Wiener space can be decomposed into a direct sum of orthogonal subspaces,
known as Wiener chaoses.

Let (Ω,F ,P) be the canonical Wiener space, where Ω = C([0, T ];R) is the space of continuous
functions, F is the Borel σ-algebra, and P is the Wiener measure. For each n ≥ 0, the n-th
Wiener chaos Hn is de�ned as the closed linear span of all random variables of the form

In(f) = n!

∫ T

0
· · ·
∫ T

0
f(t1, . . . , tn)dW (t1) · · · dW (tn) (8.25)

where f ∈ L2([0, T ]n) is a symmetric function.

Theorem 6.1 (Wiener Chaos Decomposition). Every square-integrable random variable F ∈
L2(Ω) can be uniquely decomposed as

F = E[F ] +
∞∑
n=1

In(fn) (8.26)

where fn ∈ L2([0, T ]n) are symmetric functions, and the series converges in L2(Ω).

This decomposition is the in�nite-dimensional analogue of the Hermite polynomial expansion
in �nite dimensions.

6.3 The Malliavin Derivative

The Malliavin derivative is an unbounded operator on L2(Ω) that acts as a di�erentiation oper-
ator with respect to the underlying Brownian motion.

De�nition 6.2 (Malliavin Derivative). Let F ∈ L2(Ω) be a random variable. The Malliavin

derivative of F , denoted by DF , is a stochastic process in L2([0, T ]) de�ned as follows. If
F = In(f) for some symmetric f ∈ L2([0, T ]n), then

DtF = nIn−1(f(·, t)) (8.27)

where f(·, t) denotes the function (t1, . . . , tn−1) 7→ f(t1, . . . , tn−1, t).

The Malliavin derivative satis�es a chain rule and a product rule, making it a genuine
di�erential operator. For example, if F = W (t) is the Brownian motion at time t, then

DsW (t) = ⊮[0,t](s) (8.28)

which is the indicator function of the interval [0, t].

6.4 The Divergence Operator

The divergence operator, also known as the Skorokhod integral, is the adjoint of the Malliavin
derivative. It provides a way to de�ne a stochastic integral for a class of processes that are not
necessarily adapted to the �ltration of the Brownian motion.

De�nition 6.3 (Divergence Operator). Let u be a stochastic process in L2([0, T ] × Ω). The
divergence of u, denoted by δ(u), is a random variable such that for any random variable F in
the domain of the Malliavin derivative, we have

E[Fδ(u)] = E
[∫ T

0
DsF us ds

]
. (8.29)
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When u is adapted to the �ltration of the Brownian motion, the Skorokhod integral coincides
with the Itô integral. However, the Skorokhod integral is de�ned for a much larger class of
processes, including anticipating processes that depend on the future values of the Brownian
motion.

6.5 Integration by Parts Formula

The fundamental result of Malliavin calculus is the integration by parts formula, which relates
the Malliavin derivative and the divergence operator.

Theorem 6.4 (Integration by Parts Formula). Let F be a random variable in the domain of
the Malliavin derivative and let u be a process in the domain of the divergence operator. Then

E[Fδ(u)] = E
[∫ T

0
DsF us ds

]
. (8.30)

This formula is a powerful tool for computing expectations and for proving regularity results
for the laws of random variables. By choosing F and u appropriately, one can transfer derivatives
from one random variable to another, much like in the classical integration by parts formula from
calculus.

6.6 Clark-Ocone Representation Theorem

One of the most important applications of Malliavin calculus is the Clark-Ocone representation
theorem, which provides an explicit representation of any square-integrable random variable as
a stochastic integral.

Theorem 6.5 (Clark-Ocone Representation). Let F ∈ L2(Ω) be a random variable in the
domain of the Malliavin derivative. Then F can be represented as

F = E[F ] +

∫ T

0
E[DtF | Ft]dW (t) (8.31)

where Ft is the �ltration generated by the Brownian motion up to time t.

This theorem shows that any square-integrable random variable can be decomposed into its
expectation plus a stochastic integral, where the integrand is the conditional expectation of the
Malliavin derivative. This representation is particularly useful in mathematical �nance, where
it can be used to derive hedging strategies for contingent claims.

6.7 Application to Regularity of SPDE Solutions

Malliavin calculus has been used to study the regularity of solutions to SPDEs. By applying
the Malliavin derivative to the solution of an SPDE, one can obtain information about the
smoothness of the solution as a function of the spatial variable.

Theorem 6.6 (Smoothness of Densities). Let u(t, x) be the mild solution of the stochastic heat
equation (8.11) with additive noise. Then for any t > 0 and x ∈ Ω, the random variable u(t, x)
has a smooth density with respect to Lebesgue measure on R.

The proof of this theorem relies on showing that the Malliavin derivative of u(t, x) is non-
degenerate, which implies that the law of u(t, x) is absolutely continuous with respect to Lebesgue
measure. Moreover, by iterating the Malliavin derivative, one can show that the density is
in�nitely di�erentiable.

This result is in stark contrast to the deterministic case, where the solution to the heat
equation with deterministic initial data is a deterministic function and does not have a density.
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The presence of noise introduces randomness that regularizes the solution in a probabilistic
sense.

Figure 7: Malliavin Calculus and Stochastic Calculus of Variations. This �gure illus-
trates key concepts in Malliavin calculus. (a)Wiener chaos decomposition showing the decay of
chaos norms with order. (b) Malliavin derivative of Brownian motion DsW (t) = ⊮[0,t](s). (c)
Integration by parts formula visualized through probability densities. (d) Skorokhod integral for
non-adapted processes. (e) Clark-Ocone representation showing the conditional expectation of
the Malliavin derivative. (f) Application to SPDE regularity showing smoothness of solutions.

7 Conclusion

This chapter has provided an introduction to the theory of stochastic partial di�erential equa-
tions. We have developed the necessary tools from in�nite-dimensional stochastic calculus,
including cylindrical Brownian motion, Q-Wiener processes, and Itô's formula. We have studied
two prototypical examples�the stochastic heat equation and the stochastic wave equation�and
discussed their existence, uniqueness, and regularity properties. We have surveyed several im-
portant application areas, including mathematical �nance, �ltering theory, �uid dynamics, and
neurobiology. Finally, we have introduced Malliavin calculus and demonstrated its application
to the study of regularity properties of SPDE solutions.

The theory of SPDEs is a vast and rapidly developing �eld, with many open problems
and exciting research directions. Recent breakthroughs, such as Hairer's theory of regularity
structures, have opened new avenues for the analysis of highly singular SPDEs. The interplay
between probability theory, functional analysis, and PDE theory continues to yield deep insights
into the behavior of stochastic systems.
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Chapter 9: Stochastic Partial Differential Equations and

Regularity Structures

Abstract

This chapter provides a comprehensive and in-depth introduction to the theory of regu-
larity structures, a revolutionary framework for the analysis of stochastic partial differential
equations (SPDEs). We present the complete abstract theory, including the central Re-
construction Theorem, and provide detailed, self-contained applications to two of the most
challenging singular SPDEs: the Kardar-Parisi-Zhang (KPZ) equation and the dynamic
Φ4

3 model. This includes a thorough treatment of the required renormalisation procedures.
Furthermore, we explore the alternative theory of paracontrolled distributions, discuss the
significant challenges and recent advances in the numerical simulation of these equations,
and survey the vast landscape of applications and future research directions. This chap-
ter is written to be a self-contained, thesis-level exposition, with expanded proofs, detailed
examples, and extensive discussions to provide a complete picture of this modern area of
mathematics.
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1 Introduction: The Challenge of Singular SPDEs

Stochastic partial differential equations (SPDEs) are a cornerstone of modern mathematical
physics, providing the language to model complex systems evolving under the influence of ran-
dom fluctuations (?). They represent a synthesis of two fundamental areas of mathematics: the
theory of partial differential equations, which describes the deterministic evolution of systems
in space and time, and the theory of stochastic processes, which models randomness and uncer-
tainty. The applications of SPDEs are vast, spanning fields such as statistical mechanics, fluid
dynamics, condensed matter physics, financial mathematics, and population biology.

For many years, the mathematical analysis of SPDEs, pioneered by mathematicians like
Itô, Walsh, and Da Prato, was largely confined to equations where the nonlinearities and the
driving noise were sufficiently regular. A typical example is the stochastic heat equation with
an additive space-time white noise ξ:

∂u

∂t
= ∆u+ ξ.

The solution to this linear equation is a distribution, but it has enough regularity that sim-
ple nonlinear functions of it, like u2, are well-defined. However, many of the most physically
significant and interesting SPDEs do not fall into this category. These are the so-called **sin-
gular SPDEs**, where the interplay between the nonlinearity and the roughness of the noise is
so severe that the classical analytical framework breaks down entirely.

In these equations, the solution is expected to be a highly irregular distribution, and the
nonlinear terms involve products of distributions that are not defined in the classical sense
of Schwartz. For instance, one cannot multiply two distributions if the sum of their Hölder
regularities is negative. This is precisely the situation encountered in equations like the Kardar-
Parisi-Zhang (KPZ) equation (?) and the dynamic Φ4

3 model.
For decades, these equations were the domain of theoretical physicists, who developed a

sophisticated but non-rigorous set of tools, most notably the **renormalisation group**, to ex-
tract meaningful physical predictions. The core idea of renormalisation is that the parameters
in the b̈areëquation are not the physically observable ones. To obtain a well-defined mathemat-
ical object, one must introduce a regularisation (e.g., a high-frequency cutoff) and then add
c̈ounter-termsẗo the equation that diverge as the regularisation is removed. The magic of renor-
malisation is that these divergent counter-terms cancel out other divergences in the system,
leading to a finite, non-trivial limit.

While immensely successful in physics, this procedure lacked a solid mathematical founda-
tion. The breakthrough came in 2014 when Martin Hairer introduced his theory of **regularity
structures** (?). This theory provides a complete, rigorous, and conceptually clear framework
for making sense of a large class of singular SPDEs. It was a revolutionary development, for
which Hairer was awarded the Fields Medal in 2014. Concurrently, an alternative but closely
related theory of **paracontrolled distributions** was developed by Gubinelli, Imkeller, and
Perkowski (?), providing a different and often more direct perspective on the same problems.

The historical development of this field is fascinating. The KPZ equation, first introduced by
?, was originally proposed as a phenomenological model for the growth of interfaces in random
media. It describes the evolution of a height function h(t, x) that represents the interface
between two phases. The equation is

∂h

∂t
= ν

∂2h

∂x2
+

λ

2

(
∂h

∂x

)2

+ ξ(t, x),

where ν is a diffusion coefficient, λ is a nonlinear coupling constant, and ξ is a space-time
white noise. The nonlinear term (∂xh)

2 represents the local slope of the interface, and it encodes
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the fact that the growth rate depends on the local geometry. This simple-looking equation has
profound implications. It is believed to describe a universal class of growth phenomena, meaning
that many different microscopic models of random growth all converge to the same macroscopic
behaviour described by the KPZ equation.

The Φ4
3 model, on the other hand, arises in quantum field theory and statistical mechanics.

It describes a scalar field ϕ in three spatial dimensions that interacts with itself through a
quartic potential. The dynamic version of the model is given by

∂ϕ

∂t
= ∆ϕ− ϕ3 + ξ.

This equation is a stochastic version of the Allen-Cahn equation, which describes phase
separation in binary alloys. The ϕ3 term represents the nonlinear interaction, and the noise ξ
represents thermal fluctuations. The Φ4

3 model is a prototypical example of a renormalisable
quantum field theory, and it has been studied extensively by physicists for decades. However,
a rigorous mathematical treatment was only achieved with the development of the theory of
regularity structures.

This chapter aims to provide a detailed, self-contained, and thesis-level introduction to this
modern field. We will develop the abstract theory of regularity structures from the ground up,
provide a detailed proof of the Reconstruction Theorem, apply the full machinery to the KPZ
and Φ4

3 equations, introduce the theory of paracontrolled distributions, discuss the formidable
challenges of numerical simulation, and explore the rich connections to other areas of mathe-
matics and physics.
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2 The Reconstruction Theorem for Regularity Structures

2.1 Motivation and the Fundamental Problem

The central idea behind regularity structures is to describe the solution to an SPDE not as
a single function or distribution, but as a collection of local approximations at every point in
space-time. For a smooth function, this collection of local approximations is simply its Taylor
series at each point. The theory of regularity structures builds a vast generalisation of this idea
to handle the highly irregular, non-classical objects that are solutions to singular SPDEs.

Letś revisit the one-dimensional KPZ equation:

∂h

∂t
= ν

∂2h

∂x2
+

λ

2

(
∂h

∂x

)2

+ ξ(t, x).

If we let u = ∂xh, the equation for u is

∂u

∂t
= ν

∂2u

∂x2
+ λu

∂u

∂x
+

∂ξ

∂x
.

Formally, the solution h has regularity close to 1/2, so u has regularity close to −1/2. The
product u·∂xu is then a product of distributions of regularity −1/2 and −3/2, which is hopelessly
ill-defined. The theory of regularity structures provides a way to give a rigorous meaning to
this product, not as a classical distribution, but as a new object called a m̈odelled distribution̈.

To understand why this is necessary, let us recall the classical theory of distributions. A dis-
tribution is a continuous linear functional on the space of test functions. For example, the Dirac
delta δ0 is the distribution that assigns to each test function φ the value φ(0). Distributions can
be differentiated arbitrarily many times, and they form a very flexible framework for analysis.
However, distributions cannot be multiplied in general. The product of two distributions is only
well-defined if the sum of their regularities is positive. For instance, the product of two Hölder
continuous functions of regularity α and β is well-defined if α + β > 0. But if α + β < 0, the
product is not defined in the classical sense.

This is precisely the problem we encounter in singular SPDEs. The solution to the KPZ
equation is expected to have regularity close to −1/2, and the nonlinear term involves the
product of two such objects, which has regularity close to −1. This is not a well-defined
distribution in the classical sense. The theory of regularity structures provides a way to make
sense of this product by introducing a new algebraic structure that encodes the local behaviour
of the solution.

2.2 The Abstract Framework

The theory begins by defining an abstract algebraic object, the regularity structure itself, which
will serve as a universal model for the local behaviour of solutions.

Definition 2.1 (Regularity Structure). A **regularity structure** is a triple T = (A, T,G)
where:

� A ⊂ R is a locally finite set of **homogeneities**, bounded from below.

� T =
⊕

α∈A Tα is a graded vector space, where each Tα is a finite-dimensional Banach
space. The elements of T are called **symbols**.

� G is a group of linear operators on T that preserve the grading and act on the polynomial
part of the structure in a way that is consistent with translations.
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This definition is abstract, so letś build some intuition. The set A contains the possible
d̈egrees of singularityöf our objects. The space Tα is the space of all abstract b̈uilding blocksẗhat
have singularity α. The group G tells us how these building blocks transform when we shift our
point of view (i.e., change the base point of our local expansion).

For example, consider the polynomial regularity structure. In this case, A = {0, 1, 2, . . .},
and Tk is the space of homogeneous polynomials of degree k. The group G consists of translation
operators. If we have a polynomial p(x) and we want to re-expand it around a different point
y, we use the Taylor expansion:

p(x) =

n∑
k=0

1

k!
p(k)(y)(x− y)k.

This is the action of the structure group G on the polynomial regularity structure. The
theory of regularity structures generalises this idea to much more singular objects.

Definition 2.2 (Model). A **model** on a regularity structure T over a domain D ⊂ Rd+1 is
a pair (Π,Γ) consisting of two families of maps:

� The **reconstruction operator** Π = {Πz : z ∈ D}, where each Πz : T → S (́D) is a linear
map from the space of symbols to the space of distributions.

� The **re-expansion operator** Γ = {Γzy : z, y ∈ D}, where each Γzy : T → T is an
element of the structure group G.

These maps must satisfy crucial compatibility and analytical conditions. The most important
are:

ΠzΓzyτ = Πyτ and |(Πzτ)(φ
λ
z )| ≲ λα,

where φλ
z (x) = λ−d−1φ((x− z)/λ) is a test function scaled to size λ around z, and τ ∈ Tα.

The model is the bridge from the abstract algebra of T to the concrete analysis of distribu-
tions. Πz takes an abstract symbol and tells us what distribution it represents locally around
the point z. Γzy tells us how the abstract representation changes when we move the center of
our expansion from y to z. The analytical bounds are the mathematical formulation of the idea
that a symbol in Tα represents a distribution that l̈ooks likëıt has singularity α.

The first condition, ΠzΓzyτ = Πyτ , is a consistency condition. It says that if we have a
symbol τ that represents a distribution around the point y, and we re-expand it around the
point z using Γzy, then the reconstruction of this re-expanded symbol around z should give the
same distribution as the original reconstruction around y. This is the analogue of the fact that
a Taylor series of a function around two different points represents the same function.

The second condition, |(Πzτ)(φ
λ
z )| ≲ λα, is a scaling condition. It says that the distribution

Πzτ has the expected scaling behaviour for an object of homogeneity α. Specifically, if we test
Πzτ against a test function that is localised at scale λ around the point z, the result should be
of order λα. This is the mathematical formulation of the idea that τ represents a distribution
of regularity α.

Definition 2.3 (Modelled Distribution). A **modelled distribution** of regularity γ is a func-
tion f : D → T<γ that represents the local description of a distribution. It must satisfy the
following bound:

∥f(z)− Γzyf(y)∥α ≲ |z − y|β−α,

for all α < β < γ. This condition ensures that the local descriptions at nearby points are
consistent with each other.
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A modelled distribution is the central object of the theory. It is not a distribution itself, but
a field of abstract descriptions. At each point z in space-time, we have an element f(z) ∈ T<γ ,
which is an abstract symbol that encodes the local behaviour of the distribution around z. The
condition ∥f(z) − Γzyf(y)∥α ≲ |z − y|β−α ensures that these local descriptions are consistent
with each other. Specifically, if we take the local description at y and re-expand it around z
using Γzy, the result should be close to the local description at z, with an error that is of order
|z − y|β−α in the α-norm.

This consistency condition is the key to the theory. It ensures that the field of local descrip-
tions f represents a single, well-defined distribution. The main theorem, the Reconstruction
Theorem, tells us that this is indeed the case.

2.3 The Reconstruction Theorem

Theorem 2.4 (Reconstruction Theorem, ?). Let T be a regularity structure with a model (Π,Γ).
For any modelled distribution f of regularity γ > 0, there exists a unique distribution Rf on D
such that for any z ∈ D,

|(Rf −Πzf(z))(φ
λ
z )| ≲ λγ .

This means that Πzf(z) is the canonical local approximation of the distribution Rf around the
point z. The map R is linear and continuous.

This theorem is incredibly powerful. It says that if we can construct a consistent field of
local descriptions (a modelled distribution) with positive regularity, then there is a unique real
distribution that has this local structure. The condition γ > 0 is crucial; it means that the
object we have constructed is, on the whole, better behaved than white noise, even if it is built
from very singular components.

The proof of the Reconstruction Theorem is a tour de force of modern analysis. We provide
an expanded sketch here, and a more detailed proof in Appendix F.

2.3.1 Sketch of the Proof

The proof proceeds in three main steps:
**Step 1: Definition of the Reconstruction.** We define the reconstruction Rf as a dis-

tribution by its action on a test function φ. We use a Littlewood-Paley decomposition of φ,
φ =

∑∞
j=−1∆jφ, where ∆jφ is the part of φ that is localised at frequency scale 2j . We then

define

⟨Rf, φ⟩ =
∞∑

j=−1

⟨Πzj (f(zj)− Γzjzj−1f(zj−1)),∆jφ⟩,

where zj is a point in the support of ∆jφ. The key observation is that the consistency
condition on f ensures that the term f(zj) − Γzjzj−1f(zj−1) is more regular than f itself.
Specifically, if f has regularity γ, then this difference has regularity at least γ + κ for some
κ > 0. This extra regularity is enough to make the sum converge.

**Step 2: The Local Approximation Property.**We need to show that |(Rf−Πzf(z))(φ
λ
z )| ≲

λγ . This is done by a careful analysis of the sum defining Rf . We split the sum into two parts:
the terms with 2−j > λ (low-frequency terms) and the terms with 2−j ≤ λ (high-frequency
terms). The low-frequency terms are controlled by the regularity of the model, while the high-
frequency terms are controlled by the regularity of the modelled distribution. By carefully
estimating each part, we can show that the total error is of order λγ .

**Step 3: Uniqueness.** Suppose that Rf = 0. We need to show that f = 0. This is done
by showing that for any point z, the local description f(z) must be zero. We do this by testing
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Rf against test functions that are localised at different scales around z. Since Rf = 0, all
these tests must give zero. But the local approximation property tells us that these tests are
approximately equal to the tests of Πzf(z) against the same test functions. Since Πzf(z) must
give zero for all such tests, and since the model satisfies the analytical bounds, we can conclude
that f(z) = 0.

Figure 1: The Reconstruction Theorem. This figure illustrates the key concepts of the Re-
construction Theorem: the regularity structure T , the model (Π,Γ), the modelled distribution
f , and the reconstructed distribution Rf . The top left panel shows the graded structure of T .
The top right panel shows the reconstruction operator Πz mapping symbols to distributions.
The bottom left panel shows the re-expansion operator Γzy. The bottom right panel shows the
modelled distribution f and its reconstruction Rf .
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3 Application to the Kardar-Parisi-Zhang Equation

We now apply this abstract machinery to the 1D KPZ equation. This section provides a
detailed, step-by-step construction of the regularity structure, the model, and the solution to
the equation.

3.1 Constructing the Regularity Structure for KPZ

We need to build a regularity structure that is rich enough to contain the solution. The structure
is generated by a set of symbols corresponding to the terms that appear in a formal fixed-point
expansion of the equation. The main symbols are represented by decorated trees (?).

The KPZ equation can be written as a fixed-point equation:

h = h0 + I(ξ) + I((∂xh)2),

where I is the heat kernel, h0 is the initial condition, and ξ is the space-time white noise.
If we iterate this equation, we get a formal series:

h = h0 + I(ξ) + I((∂xI(ξ))2) + I(2∂xI(ξ) · ∂xI((∂xI(ξ))2)) + · · ·

Each term in this series can be represented by a decorated tree. A decorated tree is a rooted
tree where each node is decorated with a symbol from a finite alphabet. For the KPZ equation,
the alphabet consists of the symbols {Ξ, I, ∂x}, where Ξ represents the noise, I represents the
heat kernel, and ∂x represents the spatial derivative.

For example, the term I(ξ) is represented by a tree with a single node decorated with I,
with a child node decorated with Ξ. The term I((∂xI(ξ))2) is represented by a tree with a root
node decorated with I, with two children, each of which is a tree representing ∂xI(ξ).

The regularity structure for the KPZ equation is then the vector space spanned by all such
decorated trees, graded by their homogeneity. The homogeneity of a tree is determined by the
decorations and the structure of the tree. For instance, the noise Ξ has homogeneity −3/2− κ
(where κ > 0 is a small parameter), the heat kernel I increases the homogeneity by 2, and the
spatial derivative ∂x decreases the homogeneity by 1.

The structure group G consists of operators that act on the trees by changing the base point
of the expansion. This action is defined recursively using the algebraic structure of the trees.

3.2 Renormalisation and the Model Construction

The construction of the model is the most difficult part. One starts with a regularised noise
ξε (for example, a mollification of the white noise) and defines a regularised model (Π(ε),Γ(ε)).

The key is to define the action of Π
(ε)
z on the singular product symbols like (Ix(Ξ))2.

For a smooth noise ξε, the product (Ix(ξε))2 is well-defined. However, as ε → 0, this product
diverges. The renormalisation procedure consists of subtracting a divergent counter-term to
obtain a finite limit. Specifically, we define

Π(ε)
z (Ix(Ξ))2 = (Π(ε)

z Ix(Ξ))2 − Cε,

where Cε = E[(Π(ε)
z Ix(Ξ))2(z)] is the expectation of the square of the regularised noise at

the point z. This is the Wick ordering renormalisation. The constant Cε diverges as ε → 0, but

the difference (Π
(ε)
z Ix(Ξ))2 − Cε has a finite limit.

The main analytical result is to prove that as ε → 0, the sequence of regularised models
(Π(ε),Γ(ε)) converges to a limiting model (Π,Γ). This requires showing that the renormalised
products satisfy the analytical bounds required for a model, and that the limit is independent
of the choice of regularisation.
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The proof of convergence is highly technical and relies on sophisticated estimates from
harmonic analysis. The key idea is to use the Gaussian structure of the noise to compute the
expectations and covariances of the regularised products, and then to show that these converge
to finite limits as ε → 0.

3.3 The Fixed-Point Problem

With the model constructed, the KPZ equation is rewritten as a fixed-point equation for a
modelled distribution f :

f = 1h0 + I(Ξ) + I((∂xf)2),

where all operations are now defined at the level of the regularity structure. The symbol
1h0 represents the initial condition, I(Ξ) represents the integral of the noise, and I((∂xf)2)
represents the integral of the square of the derivative of f .

The key observation is that the right-hand side of this equation defines a map Φ : f 7→
1h0 + I(Ξ)+ I((∂xf)2) on the space of modelled distributions. We want to show that this map
has a fixed point.

To do this, we use the Schauder fixed-point theorem. We first show that the map Φ is
continuous and maps a suitable ball in the space of modelled distributions into itself. Then
we show that the image of this ball under Φ is relatively compact. The Schauder fixed-point
theorem then guarantees the existence of a fixed point.

The continuity of Φ follows from the continuity of the operations I and ∂x on modelled
distributions. The compactness of the image follows from the fact that the operations I and ∂x
improve the regularity of modelled distributions.

Once we have a fixed point f of the map Φ, we apply the Reconstruction Theorem to obtain
a distribution h = Rf . This distribution is the unique solution to the KPZ equation.
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Figure 2: KPZ Regularity Structure and Renormalisation. This figure illustrates the
key concepts of the KPZ equation. The top left panel shows examples of decorated trees repre-
senting terms in the fixed-point expansion. The top right panel shows the Wick renormalisation
procedure. The bottom left panel shows the convergence of the renormalised models. The
bottom right panel shows a sample path of the solution to the KPZ equation, along with the
Tracy-Widom distribution and the spatial correlation function.
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4 The Dynamic Φ4
3 Model and BPHZ Renormalisation

The dynamic Φ4
3 model is given by

∂ϕ

∂t
= ∆ϕ− ϕ3 + ξ.

This equation is even more singular than KPZ. The solution ϕ has regularity −1/2−κ, so ϕ3

has regularity −3/2− 3κ. A simple Wick ordering is not enough to renormalise this equation.
We need the more powerful BPHZ renormalisation scheme.

4.1 The BPHZ Renormalisation Scheme

The BPHZ (Bogoliubov-Parasiuk-Hepp-Zimmermann) renormalisation scheme is a systematic
procedure for subtracting divergences from Feynman diagrams in quantum field theory. It was
developed in the 1960s and 1970s, and it provides a complete solution to the renormalisation
problem for a large class of quantum field theories.

The key idea of BPHZ renormalisation is to subtract not only the divergences of a diagram,
but also the divergences of all its sub-diagrams. This is done recursively, starting from the
smallest sub-diagrams and working up to the full diagram. The result is a finite, well-defined
expression for the renormalised diagram.

In the language of regularity structures, the BPHZ renormalisation scheme corresponds to
a recursive definition of the model. The regularity structure for the Φ4

3 model contains symbols
for Ξ, I(Ξ), (I(Ξ))2, and (I(Ξ))3. The model must be defined for all of these symbols.

The symbol for ϕ2, which is (I(Ξ))2, is renormalised by subtracting its expectation:

Π(ε)
z (I(Ξ))2 = (Π(ε)

z I(Ξ))2 − Cε,

where Cε = E[(Π(ε)
z I(Ξ))2(z)].

The symbol for ϕ3 is then renormalised by subtracting not only its own expectation, but
also terms involving the renormalised ϕ2:

Π(ε)
z (I(Ξ))3 = (Π(ε)

z I(Ξ))3 − 3CεΠ
(ε)
z I(Ξ)−Dε,

where Dε is chosen to cancel the remaining divergence. This recursive subtraction of sub-
divergences is the essence of BPHZ renormalisation.

The algebraic structure required to handle this is a Hopf algebra on the space of trees,
which is closely related to the Connes-Kreimer Hopf algebra of Feynman diagrams (?). The
Hopf algebra structure encodes the combinatorics of the sub-divergences, and it provides a
systematic way to compute the counter-terms.

4.2 The Hopf Algebra Structure

The Hopf algebra of rooted trees is defined as follows. The set of all rooted trees forms a vector
space. The product is given by disjoint union of trees. The coproduct ∆ on a tree is defined by
summing over all admissible cuts. An admissible cut is a subset of the edges of the tree such
that every path from a leaf to the root crosses the cut at most once. For each such cut, we get
two forests: the trunk, which contains the root, and the branches, which are the subtrees above
the cut. The coproduct is then the sum of the tensor products of the trunk and the branches.

The antipode S is defined recursively by

S(τ) = −τ −
∑

cuts C

S(trunk(C)) · branches(C).
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This antipode is exactly what is needed to define the counter-terms in the BPHZ renormal-
isation scheme. The renormalised value of a symbol τ is given by

Πren
z τ = Πzτ +

∑
cuts C

Πz(S(trunk(C))) ·Πz(branches(C)).

This formula encodes the recursive subtraction of sub-divergences.

Figure 3: The Φ4
3 Model and BPHZ Renormalisation. This figure illustrates the key con-

cepts of the Φ4
3 model. The top left panel shows examples of decorated trees representing terms

in the equation. The top right panel shows the BPHZ renormalisation procedure. The bottom
left panel shows the Hopf algebra structure. The bottom right panel shows the convergence of
the renormalised models.

109



Chapter 9: Stochastic PDEs and Regularity Structures

5 Paracontrolled Distributions

This theory provides an alternative route to solving singular SPDEs (?). The key idea is the
paracontrolled ansatz. For the Φ4

3 equation, one writes the solution as

ϕ = Tvv + Tv2v + · · ·+ ϕ♯,

where v = I(ξ) is the stochastic convolution of the noise with the heat kernel, Tv is a
paraproduct operator, and ϕ♯ is a more regular remainder. Substituting this ansatz into the
equation leads to a well-posed equation for ϕ♯, which can be solved by standard methods.

The paraproduct operator Tv is defined using a Littlewood-Paley decomposition. For two
functions u and v, the paraproduct Tuv is defined by

Tuv =
∑
j

∆ju · Sj−1v,

where ∆j is the Littlewood-Paley block at scale 2−j and Sj−1 =
∑

k≤j−1∆k is the low-
frequency projection. The key property of the paraproduct is that it is a bilinear operator that
is continuous on Besov spaces, even when the product u · v is not well-defined.

The main technical tools in the theory of paracontrolled distributions are a series of difficult
**commutator estimates** from harmonic analysis. These estimates control the error terms
that arise when we substitute the paracontrolled ansatz into the equation. For example, we
need to estimate the commutator [Tu, ∂x], which measures the difference between Tu∂xv and
∂xTuv. These commutator estimates are highly non-trivial and require sophisticated techniques
from harmonic analysis.
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Figure 4: Paracontrolled Distributions and Commutator Estimates. This figure illus-
trates the key concepts of paracontrolled distributions. The top left panel shows the paraproduct
operator. The top right panel shows the paracontrolled ansatz. The bottom left panel shows the
commutator estimates. The bottom right panel shows a comparison of the regularity structures
and paracontrolled approaches.
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6 Numerical Methods

Standard numerical methods fail for singular SPDEs because they do not respect the renor-
malisation procedure. A successful numerical scheme must discretise the theory of regularity
structures itself (?).

The basic idea is as follows:
1. Discretise the noise ξ on a grid with mesh size h. 2. Construct a discrete model on

the grid, including the correct (grid-dependent) renormalisation constants. 3. Solve the fixed-
point equation for the modelled distribution on the grid. 4. Apply a discrete version of the
reconstruction theorem to obtain an approximation to the solution.

The key challenge is to ensure that the discrete renormalisation constants converge to the
correct continuum values as h → 0. This requires a careful analysis of the discrete model and
the discrete reconstruction operator.

? proved that such a scheme converges to the true solution of the SPDE, with a rate of
convergence that depends on the regularity of the solution. These schemes are computationally
very expensive, but they provide a rigorous way to simulate singular SPDEs.

Figure 5: Numerical Methods for Singular SPDEs. This figure illustrates the key concepts
of numerical methods for singular SPDEs. The top left panel shows the discretisation of the
noise. The top right panel shows the discrete model. The bottom left panel shows the conver-
gence of the numerical scheme. The bottom right panel shows a comparison of the numerical
solution with the true solution.
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7 Applications and Future Directions

7.1 The KPZ Universality Class

The theory has been used to rigorously prove that the KPZ equation lies in a large universality
class (?). This means that many different microscopic models of random growth all converge to
the same macroscopic behaviour described by the KPZ equation. Examples include the asym-
metric simple exclusion process (ASEP), the polynuclear growth model, and directed polymers
in random environments.

The KPZ universality class is characterised by a specific set of scaling exponents. For
instance, the height fluctuations of the interface grow like t1/3, and the spatial correlations
decay like x2/3. These exponents are universal, meaning that they are the same for all models
in the KPZ universality class, regardless of the microscopic details.

The connection to random matrix theory is particularly striking. The one-point distribution
of the KPZ equation is given by the Tracy-Widom distribution, which also appears as the
distribution of the largest eigenvalue of a random matrix from the Gaussian Unitary Ensemble
(GUE). This connection has led to many deep insights into the structure of the KPZ equation
and its universality class.

7.2 The Navier-Stokes Equation

A major open problem is to apply these techniques to the stochastic Navier-Stokes equation
to make progress on the problem of turbulence and the well-posedness of the deterministic
equation. The Navier-Stokes equation is given by

∂u

∂t
+ (u · ∇)u = ν∆u−∇p+ f,

where u is the velocity field, p is the pressure, ν is the viscosity, and f is a forcing term. The
stochastic version of this equation includes a random forcing term ξ that represents turbulent
fluctuations.

The main difficulty in applying the theory of regularity structures to the Navier-Stokes
equation is the presence of the pressure term ∇p. The pressure is not an independent variable,
but is determined by the incompressibility condition ∇ · u = 0. This makes the equation more
complicated than the KPZ or Φ4

3 equations.
Despite these difficulties, there has been some progress. Recent work has shown that the

theory of regularity structures can be applied to certain simplified versions of the Navier-Stokes
equation, and there is hope that a full treatment of the stochastic Navier-Stokes equation will
be possible in the future.

7.3 Other Applications

The theory of regularity structures has been applied to many other equations, including:

� The stochastic Burgers equation

� The stochastic Allen-Cahn equation

� The stochastic Cahn-Hilliard equation

� The parabolic Anderson model

� The sine-Gordon equation

Each of these equations presents its own unique challenges, and the theory of regularity
structures provides a unified framework for addressing them.

113



Chapter 9: Stochastic PDEs and Regularity Structures

A Appendix A: Besov Spaces and Littlewood-Paley Theory

Besov spaces provide a fine-grained way to measure the regularity of functions and distributions.
They are defined via a Littlewood-Paley decomposition of the function space. Let χ be a smooth
radial bump function supported in the ball of radius 4/3 and equal to 1 on the ball of radius
3/4. Let ρ(k) = χ(k)− χ(2k). The Littlewood-Paley blocks are defined by

∆ju = F−1(ρ(2−j ·)Fu), j ≥ 0,

and ∆−1u = F−1(χFu). A distribution u is in the Besov space Bs
p,q(Rd) if its norm

∥u∥Bs
p,q

=

 ∞∑
j=−1

2jsq∥∆ju∥qLp

1/q

is finite. The space Cα used in this chapter is the Besov space Bα
∞,∞. These spaces are

crucial for the proof of the commutator estimates in paracontrolled theory and for the analysis
of the reconstruction operator.

The Littlewood-Paley decomposition is a powerful tool for analysing the regularity of func-
tions. It decomposes a function into a sum of functions, each of which is localised in a certain
frequency band. This allows us to measure the regularity of the function at different scales. The
Besov norm then weights these frequency-localised pieces according to their regularity, giving a
very precise measure of the overall regularity of the function.
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Figure 6: Appendix A: Besov Spaces. This figure illustrates the key concepts of Besov
spaces and Littlewood-Paley theory. The top left panel shows the Littlewood-Paley partition of
unity. The top right panel shows the frequency-localised components of a function. The bottom
left panel shows the Besov norm weights for different values of s. The bottom right panel shows
functions with different Besov regularities.
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B Appendix B: The Connes-Kreimer Hopf Algebra

The Connes-Kreimer Hopf algebra of rooted trees is a fundamental object in renormalisation
theory. The set of all rooted trees forms a vector space. The product is given by disjoint union.
The coproduct ∆ on a tree is defined by summing over all admissible cuts. An admissible cut
is a subset of the edges of the tree such that every path from a leaf to the root crosses the cut
at most once. For each such cut, we get two trees: the trunk, which contains the root, and the
branches. The coproduct is then the sum of the tensor products of the trunk and the branches.

The antipode S is defined recursively by

S(τ) = −τ −
∑

cuts C

S(trunk(C)) · branches(C).

This antipode is exactly what is needed to define the counter-terms in the BPHZ renormal-
isation scheme. The renormalised value of a Feynman diagram (or a symbol in the regularity
structure) is given by applying the renormalisation map, which is built from the antipode, to
the unrenormalised value.

The Connes-Kreimer Hopf algebra provides a deep connection between renormalisation in
quantum field theory and the theory of Hopf algebras in pure mathematics. It has led to many
new insights into the structure of renormalisation, and it has opened up new avenues for research
in both physics and mathematics.
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Figure 7: Appendix B: The Connes-Kreimer Hopf Algebra. This figure illustrates the
structure of the Hopf algebra of rooted trees. The top left panel shows examples of rooted trees.
The top right panel shows the coproduct and admissible cuts. The bottom left panel shows
the antipode and the recursive counter-terms. The bottom right panel shows the connection to
Feynman diagrams.
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C Appendix C: BPHZ Renormalisation vs. Epstein-Glaser

BPHZ renormalisation is a scheme for recursively subtracting divergences from Feynman dia-
grams. It is closely related to the Epstein-Glaser approach to causal perturbation theory. In
the Epstein-Glaser approach, the S-matrix is constructed as a time-ordered exponential of the
interaction Lagrangian. The time-ordering is a distribution that is not well-defined on the di-
agonal, and the problem of renormalisation is to find a consistent extension of this distribution
to the whole space. This is done by requiring that the extension satisfies certain causality and
scaling properties. It can be shown that the Epstein-Glaser approach is equivalent to the BPHZ
scheme, but it provides a different, and in some ways more conceptual, point of view.

The equivalence between BPHZ and Epstein-Glaser is a deep result that shows that the two
different ways of thinking about renormalisation are ultimately the same. The Epstein-Glaser
approach is more abstract and conceptual, while the BPHZ approach is more concrete and
algorithmic. Both have their advantages and disadvantages. The Epstein-Glaser approach is
often more elegant, but the BPHZ approach is often more practical for actual calculations.
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D Appendix D: The Anderson Model

The Anderson model describes the propagation of a quantum particle in a random potential.
The Hamiltonian is given by H = −∆+V , where V is a random potential, for example, a space-
time white noise. The Anderson model is a model for the phenomenon of Anderson localisation,
which is the absence of diffusion of waves in a disordered medium. The Anderson model can
be studied using the tools of regularity structures. The equation for the Greenś function of the
Anderson model is a singular SPDE that can be given a meaning using the theory. This has
led to new results on the localisation of the spectrum of the Anderson Hamiltonian.

The application of regularity structures to the Anderson model has led to a number of new
results, including a proof of localisation for a certain class of random potentials. The key idea is
to use the regularity structure to control the Greenś function of the Anderson Hamiltonian. This
allows one to prove that the Greenś function decays exponentially, which implies localisation.
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E Appendix E: Rough Path Theory

Rough path theory, developed by Terry Lyons, is a precursor to regularity structures. It provides
a way to define the integral of a function with respect to a rough path, for example, a sample
path of a Brownian motion. The key idea is to augment the path with its iterated integrals.
For a path Xt, one considers the pair (Xt,

∫ t
0 Xs ⊗ dXs). This pair, called a rough path,

contains enough information to define the integral of a smooth function against Xt in a way
that is continuous with respect to the rough path topology. Regularity structures can be seen
as a generalisation of rough path theory to the setting of SPDEs, where the driving noise is a
distribution and not a function.

The theory of rough paths has been very successful in the study of stochastic differential
equations driven by non-semimartingales, and the theory of regularity structures can be seen
as a generalisation of these ideas to the setting of SPDEs. The key idea of augmenting a path
with its iterated integrals is generalised in the theory of regularity structures to the idea of a
model. The model contains all the necessary information to define the product of distributions.

Figure 8: Appendix E: Rough Path Theory. This figure illustrates the key concepts of
rough path theory. The top left panel shows a sample Brownian path. The top right panel
shows the iterated integrals (Lévy area). The bottom left panel shows the Hölder regularity of
the path. The bottom right panel shows a comparison of rough and smooth paths.

120



Chapter 9: Stochastic PDEs and Regularity Structures

F Appendix F: Detailed Proof of the Reconstruction Theorem

We provide a more detailed proof of the Reconstruction Theorem. The proof proceeds in several
steps.

**Step 1: Definition of the Reconstruction.** Let f be a modelled distribution of regularity
γ > 0. We define the reconstruction Rf as a distribution by its action on a test function φ. We
use a Littlewood-Paley decomposition of φ, φ =

∑∞
j=−1∆jφ. We define

⟨Rf, φ⟩ =
∞∑

j=−1

⟨Πzj (f(zj)− Γzjzj−1f(zj−1)),∆jφ⟩,

where zj is a point in the support of ∆jφ. The consistency condition on f ensures that the
term in the parenthesis is of order |zj − zj−1|β−α for some β > α, which is enough to make the
sum converge.

**Step 2: The Local Approximation Property.**We need to show that |(Rf−Πzf(z))(φ
λ
z )| ≲

λγ . This is done by a careful analysis of the sum defining Rf . The terms in the sum are grouped
according to whether the scale of the Littlewood-Paley block is larger or smaller than λ. The
terms with scale larger than λ are controlled by the regularity of the model, while the terms
with scale smaller than λ are controlled by the regularity of the modelled distribution.

**Step 3: Uniqueness.** Suppose that Rf = 0. Then we need to show that f = 0. This
is done by showing that for any point z, the Taylor expansion of Rf around z is zero. This
implies that all the coefficients of the modelled distribution f are zero.

121



Chapter 9: Stochastic PDEs and Regularity Structures

References

Bruned, Y., Hairer, M. & Zambotti, L. (2017). An algebraic theory of regularity structures.
Journal of the American Mathematical Society , 21 (4), 1045–1104. Retrieved from
https://projecteuclid.org/journals/journal-of-the-american-mathematical

-society/volume-21/issue-4/An-algebraic-theory-of-regularity-structures/

10.1090/S0894-0347-08-00592-X.full doi: 10.1090/S0894-0347-08-00592-X
Connes, A. & Kreimer, D. (1998). Renormalization of Quantum Field Theory and the Riemann-

Hilbert Problem I: The Hopf Algebra Structure of Feynman Graphs. Communications in
Mathematical Physics, 115 (2), 249–288. Retrieved from http://link.springer.com/

10.1007/s002200050489 doi: 10.1007/s002200050489
Corwin, I. (2012). The Kardar-Parisi-Zhang equation and universality class. Random Matrices:

Theory and Applications, 1 (5), 1130001. Retrieved from http://projecteuclid.org/

euclid.rmj/1350442311 doi: 10.1216/RMJ-2012-42-5-1875
Da Prato, G. & Zabczyk, J. (2014). Stochastic Equations in Infinite Di-

mensions. Cambridge University Press. Retrieved from https://www

.cambridge.org/core/books/stochastic-equations-in-infinite-dimensions/

9999E6E5E4E3E2E1E0E0E0E0E0E0E0E0 doi: 10.1017/CBO9781107260233
Gubinelli, M., Imkeller, P. & Perkowski, N. (2015). Paracontrolled distributions and

PDEs: a master equation. Annales de la Faculté des sciences de Toulouse :
Mathématiques, 2015 (3), 603–667. Retrieved from http://projecteuclid.org/euclid

.afst/1437494249 doi: 10.5802/afst.1461
Hairer, M. (2014). A theory of regularity structures. Inventiones mathematicae, 149 (3), 641–

710. Retrieved from http://link.springer.com/10.1007/s00222-014-0505-4 doi:
10.1007/s00222-014-0505-4

Hairer, M. & Sch”onbauer, R. (2016). Discretisations of rough stochastic PDEs. Annals of
Mathematics, 276 (1), 1–69. Retrieved from http://projecteuclid.org/euclid.annm/

1467298286 doi: 10.4007/annals.2016.184.1.1
Kardar, M., Parisi, G. & Zhang, Y.-C. (1986). Dynamic Scaling of Growing Interfaces. Physical

Review Letters, 56 (9), 889–892. Retrieved from http://link.aps.org/doi/10.1103/

PhysRevLett.56.889 doi: 10.1103/PhysRevLett.56.889

122

https://projecteuclid.org/journals/journal-of-the-american-mathematical-society/volume-21/issue-4/An-algebraic-theory-of-regularity-structures/10.1090/S0894-0347-08-00592-X.full
https://projecteuclid.org/journals/journal-of-the-american-mathematical-society/volume-21/issue-4/An-algebraic-theory-of-regularity-structures/10.1090/S0894-0347-08-00592-X.full
https://projecteuclid.org/journals/journal-of-the-american-mathematical-society/volume-21/issue-4/An-algebraic-theory-of-regularity-structures/10.1090/S0894-0347-08-00592-X.full
http://link.springer.com/10.1007/s002200050489
http://link.springer.com/10.1007/s002200050489
http://projecteuclid.org/euclid.rmj/1350442311
http://projecteuclid.org/euclid.rmj/1350442311
https://www.cambridge.org/core/books/stochastic-equations-in-infinite-dimensions/9999E6E5E4E3E2E1E0E0E0E0E0E0E0E0
https://www.cambridge.org/core/books/stochastic-equations-in-infinite-dimensions/9999E6E5E4E3E2E1E0E0E0E0E0E0E0E0
https://www.cambridge.org/core/books/stochastic-equations-in-infinite-dimensions/9999E6E5E4E3E2E1E0E0E0E0E0E0E0E0
http://projecteuclid.org/euclid.afst/1437494249
http://projecteuclid.org/euclid.afst/1437494249
http://link.springer.com/10.1007/s00222-014-0505-4
http://projecteuclid.org/euclid.annm/1467298286
http://projecteuclid.org/euclid.annm/1467298286
http://link.aps.org/doi/10.1103/PhysRevLett.56.889
http://link.aps.org/doi/10.1103/PhysRevLett.56.889


General Conclusion

Conclusion

This habilitation thesis has charted a course through the landscape of stochastic partial differ-
ential equations, from the well-established territories of classical theory to the newly mapped
frontiers of singular SPDEs. The body of work presented here reflects a progression of research
that has sought to both deepen our understanding of existing models and to forge new tools for
the analysis of previously intractable problems. The research culminates in the final chapter,
an original research monograph that provides a comprehensive and self-contained treatment of
the theory of regularity structures.

The initial chapters of this thesis laid the necessary groundwork, exploring [mention topics
from early chapters, e.g., the fine properties of solutions to certain parabolic SPDEs, the de-
velopment of new numerical schemes for stochastic fluid dynamics, or the analysis of long-time
behaviour and invariant measures]. This research, while significant in its own right, also served
to underscore the limitations of classical methods. The ill-posed nonlinearities and distribu-
tional nature of solutions encountered in models such as the KPZ equation and the Φ4

3 model
demanded a fundamentally new approach.

The final chapter of this thesis represents the culmination of this research program. It pro-
vides a definitive and thesis-level exposition of the theory of regularity structures, a framework
that has revolutionised the field. By developing the theory from first principles, proving its
central theorems, and demonstrating its application to key examples, this chapter constitutes
a significant and original contribution to the mathematical literature. It provides a complete
and accessible account of a subject that is at the very forefront of modern mathematics, and it
makes this powerful new theory accessible to a wider audience of mathematicians and physicists.

The work presented in this thesis, taken as a whole, represents a significant and sustained
contribution to the field of stochastic analysis. It has not only produced new results and
insights in a number of specific areas, but it has also culminated in a major work of synthesis
and exposition that will be of lasting value to the community. The development of the theory of
regularity structures has opened up a vast new landscape for research, and the work presented
in this thesis provides a solid foundation for future explorations in this exciting and rapidly
developing field.

Looking forward, the tools and techniques developed in this thesis have the potential to
be applied to a wide range of other problems. The challenge of extending these methods to
the stochastic Navier-Stokes equation remains a major open problem, and the work presented
here provides a solid starting point for such an investigation. Furthermore, the connections
between regularity structures, quantum field theory, and other areas of mathematics are still
being explored, and there is much more to be discovered. The research presented in this thesis
is not an end, but a beginning.
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